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CS61A Notes – Week 11 – Exceptions, Orders of Growth, and Calculator 

 

Exceptions 
Up to this point in the semester, we have assumed that the input to our functions are always correct, and have thus not 
done any error handling.  However, functions can often have large domains, and we want our functions to handle 
erroneous input gracefully.  This is where exceptions come in. 
 
Exceptions provide a general mechanism for adding error-handling logic to programs.  Raising an exception is a 
technique for interrupting the normal flow of execution in a program, signaling that some exceptional circumstance has 
arisen. 
 
An exception is an object instance of a class that inherits, either directly or indirectly, from the BaseException class. 
 The following is an example of how to raise an exception: 
 
>>> raise Exception('An error occurred') 

 Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

Exception: An error occurred 

 
Notice how the string ‘An error occurred’ is an argument to the Exception object being created, and the string is part of 

what Python prints out in response to the exception being raised.  If the exception is raised while within a try 

statement, then the interpreter will immediately look for an except statement that handles the type of exception 
being raised.  try and except statements allow programs to respond to unexpected arguments and other errors 
gracefully, rather than terminating entirely.   
 
Here’s is how to structure try and except statements: 
 

try: 

   <try suite> 

except <exception class> as <name>: 

   <except suite> 

      except <exception class> as <name>: 
      <except suite> 
  . . . 

 
Questions: 
1. Fill in all the blanks to produce the desired output: 

 
>>> try: 
       x = 3/0 
   except ZeroDivisionError as e: 

       print(‘handling a‘, type(e)) 
       x = 9001 

handling a <class ‘ZeroDivisionError’> 
>>> x 
9001 
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2. Write the function safe_square that uses exceptions to print ‘Incorrect argument type’ when anything other than 

an instance of the int or float class is given as an argument.  Otherwise, safe_square should multiply the 

argument by itself.  A useful fact is that a TypeError is raised when * is given incorrect arguments. 

 
def safe_square(x): 

 try: 

  return x*x 

 except TypeError as e: 

  print(‘Incorrect argument type’) 
 

 

 

 

 

3. Predict the output of each of the following lines, assuming safe_square is implemented as described in question 2. 
>>> safe_square(‘hello’) 

Incorrect argument type 

 
>>> safe_square(‘hello’ * 5) 

Incorrect argument type 

 
>>> safe_square(‘hello’ * ‘hello’) 

TypeError: can’t multiply sequence by non-int of type ‘str’ 

 
>>> safe_square(1 * 2.5) 

6.25 

 
>>> safe_square(1 / 0) 

ZeroDivisionError: division by zero 
 
4. Consider the following: 
>>> def hello_append(lst): 

       try: 
           if type(lst) != list: 

               raise HelloAppendError(lst) 
           lst.append(‘hello’) 
       except HelloAppendError as e: 

           print(‘type of arg was’, type(e.contents)) 
 

Create a HelloAppendError class that would create the following output given the definition of hello_append 

above: 
>>> x = 5 

>>> hello_append(x) 

type of arg was <class ‘int’> 

 

class HelloAppendError(Exception): 

 def __init__(self, contents): 

  self.contents = contents 

 
 
 

 

 
When writing big programs, it’s usually a good idea to have robust error handling logic that details the state of the 
program so that you, as the programmer, can debug your code more effectively.  Additionally, by gracefully responding 
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to errors, your program could potentially continue to run even when errors or unexpected input occur.  In this class, we 
are primarily interested in using exceptions as part of the error handling logic that we will implement when we start 
creating interpreters in Python. 
 
 
 
 
 
 
 

Orders of Growth 

 
(Notes developed based on those of George Wang, Jon Kotker, Seshadri Mahalingam, Chung Wu, and Justin Chen) 
 
When we talk about the efficiency of a procedure (at least for now), we’re often interested in how much more expensive 
it is to run the procedure with a larger input. That is, as the size of the input grows, how do the speed of the procedure 
and the space its process occupies grow? 
 
For expressing all of these, we use what is called the Big-Theta notation. For example, if we say the running time of a 
procedure foo is in Θ(n2), we mean that the time it takes to process the input grows as the square of the size of the 
input. More generally, we can say that foo is in some Θ(f(n)) if there exist some constants k1 and k2 such that and some 
constants c1 and c2 such that, 
 
k1 * f(n) < running time of foo for some n > c1, and 
k2 * f(n) > running time of foo for some n > c2 
 
To prove, then, that foo is in Θ(f(n)), we only need to find constants k1 and k2 where the above holds. Fortunately for 
you, in 61A, we’re not that concerned with rigor, and you probably won’t need to know exactly how to do this (you will 
get the painful details in 61B!) What we want you to have in 61A, then, is the intuition of guessing the orders of growth 
for certain procedures. 

 

Kinds of Growth 

Here are some common ones: Θ(1) – constant time (takes the same amount of time regardless of input size); Θ(log n) – 
logarithmic time; Θ(n) – linear time; Θ(n2), Θ(n3), etc – polynomial time; Θ(2n) – exponential time (“intractable”; these 
are really, really horrible). 

Orders of Growth in Time 

“Time”, for us, basically refers to the number of recursive calls or the number of times the suite of a while or for loop 
executes. Intuitively, the more recursive calls we make, the more time it takes to execute the function. 
 
● If the function contains only primitive procedures like + or *, then it is constant time – Θ(1). 
● If the function is recursive, you need to: 
         a. Count the number of recursive calls there will be given input n 
         b. Count how much time it takes to process the input per recursive call 
The answer is usually the product of the above two. For example, given a fruit basket with 10 apples, 
how long does it take for me to process the whole basket? Well, I’ll recursively call my eat procedure 
which eats one apple at a time (so I’ll call the procedure 10 times). Each time I eat an apple, it takes 
me 30 minutes. So the total amount of time is just 30*10 = 300 minutes! 
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● If the function contains calls of helper functions that are not constant-time, then you need to take the 
orders of growth of the helper functions into consideration as well. In general, how much time the helper 
function takes would be factored. 
● When we talk about orders of growth, we don’t really care about constant factors. So if you get something 
like Θ(1000000n), this is really Θ(n). We can also usually ignore lower-order terms. For example, if we get 
something like Θ(n3 + n2 + 4n + 399), we take it to be Θ(n3). 
 

 
 
Questions: 
 
Give the order of growth in time for the following functions: 
 
1. def sum_of_factorial(n): 
 if n == 0: 

  return 1 

 else: 

  return factorial(n) + sum_of_factorial(n-1) 

 

Θ(n2) 

 

 

2. def fib_iter(n): 
 prev, curr, i = 0, 1, 1 

 while i < n: 

  prev, curr = curr, prev + curr 

  i += 1 

 return curr 

Θ(n) 

 

 
3. def mod_7(n): 
 if n % 7 == 0: 

  return 0 

 else: 

  return 1 + mod_7(n-1) 

Θ(1) 

 

 

4. Given: 
 
def bar(n): 

 if n % 2 == 1: 

  return n + 1 

 return n 

 

def foo(n): 

 if n < 1: 

  return 2 

 if n % 2 == 0: 

  return foo(n-1) + foo(n-2) 

 else: 

  return 1 + foo(n-2) 

 
What is the order of growth of foo(bar(n))? 
Θ(n2) 
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Calculator 

 
We are beginning to dive into the realm of interpreting computer programs. In order to do so, we’ll have to examine 
some new programming languages. The Calculator language, invented for this class, is the first of these examples. 
 
Our Calculator language is actually nearly identical to Python, except it only handles arithmetic operations - add, sub, 
mul, div, etc. Also unlike Python’s arithmetic operators, we’ll let Calculator’s operators each take an arbitrary number of 
arguments.  
 
Here’s a few examples of Calculator in action: 
 
calc> 6 

6 

 

calc>mul() 

1 

 

calc>add(1, mul(3, sub(3, 7))) 

-11 
 
Our goal now is to write an interpreter for the Calculator language. The job of an interpreter is, given an expression, 
evaluate its meaning. So let’s talk about expressions. 
 
Representing Expressions 
 
When we type a line at the Calculator prompt and hit enter, we’ve just sent an expression to the interpreter. We can 
represent an Expression as an object: 
 
class Exp(Object): 

 def __init__(self, operator, operands): 

  self.operator = operator 

  self,operands = operands 

 def __repr__(self): 

  return ‘Exp({0}, {1})’.format(repr(self.operator), repr(self.operands))) 

 def __str__(self): 

  operand_strs = ‘, ‘.join(map(str, self.operands)) 

  return ‘{0}({1})’.format(self.operand, operand_strs) 

 

Don’t worry about what repr and str do for an Exp right now, the most important thing to note is that every Exp by 
its operator and operands. Also another thing to note: an Exp’s operands are always themselves Exps as well. 

 

Example: If I wanted to represent the Calculator expression add(2, 3), I would do this by calling the Exp 

constructor as follows: Exp(‘add, [2, 3]). 

 
Our Calculator language is only concerned with two kinds of expressions: numbers, which are self-evaluating 
expressions, and call expressions, which involve an operator acting on some number of arguments, each of which are 
expressions.  
 
What does it mean for a number to be self-evaluating? If we evaluate an expression that is a number, the value of the 
expression (i.e. the result returned by evaluating it) is that number. Simple! 
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What about evaluating call expressions? We can follow this straightforward two-step process. 
 
1. Evaluate the operands. 
2. Apply the operator, to the arguments (the values of the operands) 
(Sound familiar?) 
 
Using this two-step process, we can interpret any Calculator expression. The first step will be handled by a function 
called calc_eval, and the second step will be handled by a function called calc_apply. 
 
 
 
 
Here’s calc_eval: 

 
def calc_eval(exp): 

 if type(exp) in (int, float): # if the expression is a number 

  return exp 

 else: 

  arguments = list(map(calc_eval, exp.operands)) #evaluate the operands 

  return calc_apply(exp.operator, arguments) #apply the function to operands 

 
As you can see, all we’ve done is follow the rules of evaluation outlined above. If the expression is a number, return it. 
Else, evaluate the operands and apply the operator the evaluated operands.  
 
How do we apply the operator? With calc_apply: 

 
def calc_apply(operator, args): 

 if operator in (‘add’, ‘+’): 

  return sum(args) 

 if operator in (‘sub’, ‘-’): 

  if len(args) == 0: 

   raise TypeError(operator + ‘ requires at least 1 argument’) 

  if len(args) == 1: 

   return -args[0] 

  return sum(args[0], [-args for args in args[1:]]) 

 if operator in (‘mul’, ‘*’): 

  return reduce(mul, args, 1) 

 

 
Depending on what the operator is, we can match it to a corresponding Python call. Each conditional in the function 
above corresponds to the application of one operator.  
 
Something very important but may not have been obvious: calc_exp deals with expressions, calc_apply deals with 
values.  
 
Questions 
 
Let’s say we want to make the variable a contain the object representation of the Calculator expression:  
add(4, 5, mul(3, 2)). Fill in the blank: 
 
>>>a = Exp(‘add’, [4, 5, Exp(‘mul’, [3, 2])]) 
Suppose we typed the following expression into the calc interpreter: 
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calc> add(1, mul(3, sub(3, 7))) 

 

How many calls to calc_eval does this generate? How many calls to calc_apply? 
 
7 calls to calc_eval, 3 calls to calc_apply. 
 

The above implementation of the calc_exp and calc_apply does not handle calls to div. Add to them so we can 
evaluate Calculator div calls: 
 
Example: 
calc>div(8, 4) 

2 

 

… 

if operator in (‘div’, ‘/’): 

if len(args) != 2: 

raise TypeError(operator + ‘requires 2 arguments’) 

 num, denom = args 

 return num / denom 

  


