
CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

CS61A Notes – Week 12 – The Logo Programming Language

The Logo Programming Language
The Logo programming language was developed in the late 1960’s as a tool for teaching programming. Its simple syntax,
conversational style, high-level data types, and informative error messages helped Logo to gain popularity as a
professional language as well. Several commercial and public-domain implementations of Logo exist today, including
UCB Logo developed here at Berkeley by Brian Harvey and his students. Logo serves as the basis for the Scratch and
BYOB graphical programming languages used in CS 10.

Logo Features
We'll first present a sample Logo program, and then discuss each component separately.

print "Hello!

print [Starting a program]

to fib :n

 if :n = 0 [output 0]

 if :n = 1 [output 1]

 output (fib :n - 1) + (fib :n - 2)

end

print sentence [fib(4) is:] (fib 4)

Running this through logo outputs:

Hello!

Starting a program

fib(4) is: 3

Print

print is a built-in procedure that, given a single argument, outputs the argument to the screen. Notice that giving a list

(sentence) to print will result in the brackets being removed:

? print [hello world]

hello world

To get the brackets to show up, we can use the built-in show procedure:

? show [hello world]

[hello world]

Parentheses
Logo doesn’t require any punctuation for call expressions, but parentheses can be added for clarity. Unlike Python,
which puts parentheses around only the operand sub-expressions of a call expression, Logo allows you to put
parentheses around the whole call expression, including the operator. These parentheses are required in other dialects
of Lisp.

? (print (sum 1 2))

3

Parentheses also affect how infix operators are applied, just like in algebra. Adding parentheses liberally when using infix
operators is always a good idea in Logo.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

? (print ((5 - 1) + 4))

8

? (print (5 - (1 + 4)))

0

Defining Procedures

To define a procedure, we use the to special form, which is of the form:

to <procedure name> <arg_1> … <arg_n>

 <body>

end

Notice the use of the ending 'end' keyword - don't forget this!

In Logo, you return a value by using the output keyword. Here's a side-by-side comparison of fib in Logo versus fib

in Python:

Logo to fib :n

 if :n = 0 [output 0]

 if :n = 1 [output 1]

 output (fib :n - 1) + (fib :n - 2)

end

Python def fib(n):

 if n == 0:

 return 0

 if n == 1:

 return 1

 return fib(n - 1) + fib(n - 2)

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

Conditional Expressions: if, and ifelse

One pretty neat feature of Logo is how it handles if/ifelse - unlike most programming languages out there, Logo

does not make if/ifelse a special form - instead, it's just a regular procedure!

? (print (if 3 = 3 [4 + 5]))

9

The if procedure takes two arguments: the first argument is either the word True or the word False, and the second

argument is a list that contains a Logo expression to be evaluated if the first argument is True.

Logo handles delaying the conditional expression of the if/ifelse constructs by treating the conditional expressions

as simply lists of words. If the first argument is True, Logo will then treat that list as Logo code. How does Logo 'execute'

a list of words? With the run built-in procedure!

? (print (run (list "first [this is a list])))

this

Given an argument list, run will execute the list as Logo code, i.e. as if you had typed the list into the interpreter

(without the brackets).

ifelse is essentially the same as if, just with a third argument list representing the line of Logo to evaluate if the first

argument is False:

? print ifelse (1 = 3) [2 + 5] [sentence "was "false]

was false

Higher-Order Functions in Logo

In Logo, procedures are not first-class - in other words, you can't pass functions around as arguments like in Python.

However, we can still get the same effect by passing the name of the function, and using run. Here's a function that

applies a given function to an argument:

to apply_fn :fn :arg

 output run list :fn :arg

end

? print apply_fn "first [1 2]

1

Here, I'm constructing a list out of :fn and :arg (creating [first [1 2]]), then calling run on that list.

Due to this technique of using lists and run to simulate passing functions, we say that expressions are first-class objects,

since they are just lists (i.e., sentences).

Logo is Case-Insensitive

One final note - Logo is a case-insensitive language. For instance, the following lines are equivalent:

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

? print ifelse 1 = 1 ["moo] ["baa]

? PRINT IFELSE 1 = 1 ["moo] ["baa]

? pRiNt ifElse 1 = 1 ["moo] ["baa]

Exercises

1. To prove that if/ifelse don't have to be special forms in Logo, define a Logo procedure ifelse_2 that behaves

just like the built-in ifelse:

? ifelse_2 "hi = "hi [print sentence "was "true] [print sentence "was "false]

was true

2. Define the procedure add_s that, given a sentence of words, adds the letter s to the end of each word:

? print add_s [lion tiger bear oh my]

lions tigers bears ohs mys

3. Define the map_fn procedure in Logo – map_fn should take a function name and a sentence, and apply the function

to each argument:

? map_fn "first [i wish today was just like every other day]

[i w t w j l e o d]

4. Redefine add_s (from question 2) to instead call map_fn.

5. Say I mistyped, and I forgot to quote the name of the procedure when making a call to map:

? map first [this is the story of a girl]

not enough inputs to map

What happened here?

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

Procedure Calling in Logo

Perhaps one of the more difficult things to get used to in Logo is the 'mysterious' lack of parenthesis when calling

procedures:

? print first ifelse run [1 = 1] [word word 1 2 3] [sentence "is "awesome]

How can this expression possibly work? Ahh! (it returns 1, by the way)

The key to understanding this line is that you have to understand how Logo interprets lines. When Logo sees the name

of a function, it performs an internal lookup to see how many arguments the function takes (for now, let's omit

functions that take any number of arguments). It then takes the number k that it gets back, decides that the next k

values shall be arguments to this function, and then proceeds to evaluate the rest of the line.

For instance, to evaluate the line:

? word word 1 2 3

We're calling the word procedure, and Logo figures out that word takes 2 arguments. It then goes to evaluate the rest

of the line (hopefully resulting in 2 values being produced!).

word word 1 2 3

Logo sees that we're calling the word procedure, which takes 2 arguments:

word word 1 2 3

Here, 1 is self-evaluating.

word word 1 2 3

Here, 2 is self-evaluating.

word word 1 2 3

At this point, Logo notices that the two values we just evaluated are the arguments for the second word function, so we

get:

word word 1 2 3 => word 12 3

Then, 3 is self-evaluating.

word 12 3

At this point, Logo notices that the two values we just evaluated are the arguments for the first word function, so we

finally get:

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

word 12 3 => 123

If it helps you, you can parenthesize expressions to see how things fit together (using prefix notation from Scheme):

(word (word 1 2) 3)

Exercises

1. What Would Logo Print? (WWLP)

Indicate what Logo would print - if an error occurs, please briefly describe the error.

Note: se, bf, and bl are shorthands for sentence, butfirst, and butlast respectively.

a.

? show run [run [list "run word "L "OL]]

b.

? show run [run [list run word "L "OL]]

c.)

? show run [run [list run [word "L "OL] "HAI]]

d.)

? print se se first bf [are fezzes cool] word word "a "r "e map "first [come on

over larry]

2. Louis Reasoner is practicing with Logo, and decides to define the fib procedure in order to get used to Logo syntax:

to fibo :n

 if :n = 0 [output 0]

 if :n = 1 [output 1]

 output fibo :n - 1 + fibo :n - 2

end

? fibo 4

However, this code infinite loops! Louis is puzzled. What is happening here? What is the simplest fix you can make?

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

Dynamic Scoping in Logo

Recall that Python uses Lexical Scoping, which controls what frame a newly created frame points to. Lexical Scoping

says: when calling a function, create a new frame that extends the environment that the function was defined in.

Logo, however, uses a different rule - it uses Dynamic Scoping. Dynamic Scoping says: when calling a function, create a

new frame that extends the current frame.

to repeat_name :name :num

 output repeat_name_helper :num

end

to repeat_name_helper :num

 if :num = 0 [output []]

 output sentence :name (repeat_name_helper :num - 1)

end

? print repeat_name "brian 4

brian brian brian brian

This result might be a little surprising to you - at first glance, it seems as if ':name' shouldn't be bound in

repeat_name_helper's environment. After all, this would be true in the equivalent Python program:

def repeat_name(name, num):

 return repeat_name_helper(num)

def repeat_name_helper(num):

 if num == 0:

 return []

 else:

 return [name] + repeat_name_helper(num - 1)

>>> repeat_name("brian", 4)

The above Python program throws an unbound variable error for the variable name in the body of

repeat_name_helper. The key difference, then, is in the fact that Logo uses Dynamic Scoping (whereas Python uses

Lexical Scoping).

In the Logo program, when repeat_name calls repeat_name_helper, repeat_name_helper has access to

all variables visible to the caller - in this case, repeat_name. Interesting! This implies that repeat_name_helper

will not throw an unbound variable error if the function calling repeat_name_helper has a :name variable defined.

This new scoping mechanism fundamentally changes the way we look at code. In Lexical Scoping, when you look at a

procedure definition, you always know which variable points to which value. The order/manner in which you call

functions doesn't change what a variable points to. However, in Dynamic Scoping the order/manner in which function

calls happen does matter, since variable names will get resolved differently depending on who calls what.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip

Exercises

1. Come up with a short Logo program that prints Alice if Lexical Scoping is used, and Bob if Dynamic Scoping is used.

2. Consider the following code:

Note: the 'make' procedure creates variables

make "x 2

to foo :x

 output bar [5 + garply]

end

to bar :exp

 output :x * (run :exp)

end

to garply

 output :x * 2

end

? print foo 4

a. If Logo were to use Lexical Scope (i.e. the scoping rule that Python uses), what would be printed out?

b. As you now know, Logo uses Dynamic Scope. What does Logo actually print out?

