
CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

1	

CS61A Notes – Week 13: Interpreters
	

Read-Eval Loop
Unlike Python, the result of evaluating an expression is not automatically printed. Instead, Logo complains if
the value of any top-level expression is not None.

 ? 2
 You do not say what to do with 2.

In Logo, any top-level expression (i.e., an expression that is not an operand of another expression) must
evaluate to None. The print procedure always outputs None, and so printing does not cause an error.
Multiple call expressions may appear on the same line of Logo, and the interpreter will evaluate each one.
When a top-level expression evaluates to a non-None value, the remaining expressions on the line are
ignored.

Evaluator
Logo is evaluated one line at a time. The sentence returned from parse_line is passed to the eval_line
function, which evaluates each expression in the line. The eval_line function repeatedly calls logo_eval,
which evaluates the next full expression in the line until the line has been evaluated completely, then
returns the last value. The logo_eval function evaluates a single expression.

The form of a multi-element expression in Logo can be determined by inspecting its first element. Each form
of expression as its own evaluation rule.

1. A primitive expression (a word that can be interpreted as a number, True, or False) evaluates to
itself.

2. A variable (a string that start with “:”) is looked up in the environment.
3. A definition (which starts with “to”) is handled as a special case.
4. A quoted expression evaluates to the text of the quotation, which is a string without the preceding

quote. Sentences (represented as Python lists) are also considered to be quoted; they evaluate to
themselves.

5. A call expression looks up the operator name in the current environment and applies the procedure
that is bound to that name.

1. Fill in the code for logo_eval
def logo_eval(line, env):
 token = line.pop()
 if _________________: #check if primitive

 return _____________

 elif _______________: #check if variable
 return env.lookup_variable(variable_name(token))
 elif ______________: #check if definition
 return eval_definition(line, env)
 else:
 procedure = env.procedures.get(token, None)
 if not procedure:
 error('I do not know how to {0}.'.format(token))
 return apply_procedure(procedure, line, env)

CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

2	

2. How many calls to eval and apply on the following lines of code?

? sum 1 2

? sum word 1 2 3
	

	

More Dynamic Scope
Recall that Python uses Lexical Scoping, which controls what frame a newly created frame points to.
Lexical Scoping says: when calling a function, create a new frame that extends the environment that the
function was defined in. Logo, however, uses a different rule - it uses Dynamic Scoping. Dynamic Scoping
says: when calling a function, create a new frame that extends the current frame.
	

? make "x 3
? to scope :x
 helper 5
 end
? to helper :y
 print (sentence :x :y)
 end
? scope 4
; expects 4 5

Under lexical scope, this would return something along the lines of [3 5]. However, with dynamic scope,
helper has access to the :x variable as it extends the frame with that variable. Thus, we end up with a
sentence of 4 5 printed to the screen.
	

? to bar :n
 output sentence :n baz :n+1
 end
? to baz :m
 output sentence :n :m
 end
? make “n 7
? bar 10
	

1. What is the result of this using lexical scope? Dynamic scope?

2. Draw an environment diagram for both.
	

	

	

	

	

	

	

	

	

	

	

CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

3	

	

Assignment
Logo supports binding names to values. As in Python, a Logo environment consists of a sequence of
frames, and each frame can have at most one value bound to a given name. In Logo, names are bound
with the make procedure, which takes as arguments a name and a value:

? make "x 2

The values bound to names are retrieved by evaluating expressions that begin with a colon:

? print :x
2

Assignment rules:

1. if the name is already bound, make re-binds that name in the first frame in which the name is bound
(automatic non-local Python assignment)

2. If the name is not bound, make binds the name in the global frame

Given:

? to foo :n
 make “n 6
 make “m 7
 print bar :n
 print :n
 end
? to bar :m
 make “n 4
 make “m 8
 output :m
 end

1. What is printed when we call foo 10?

2. What is printed when we call print :n? How about print :m?
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

4	

	

Procedures
Logo supports user-defined procedures using definitions that begin with the “to” keyword. The first line of a
definition gives the name of the new procedure, followed by the formal parameters as variables. The lines
that follow constitute the body of the procedure, which can span multiple lines and must end with a line that
contains only the token “end”

Logo's application process for a user-defined procedure is similar to the process in Python. Applying a
procedure to a sequence of arguments begins by extending an environment with a new frame, binding the
formal parameters of the procedure to the argument values, and then evaluating the lines of the body of the
procedure in the environment that starts with that new frame.
	

class Procedure(object):
 """ A Logo procedure, either primitive or user-defined

 name: The name of the procedure. For primitive procedures with multiple
 names, only one is stored here.

 arg_count: Number of arguments required by the procedure.

 body: A Logo procedure body is either:
 a Python function, if isprimitive == True
 a list of lines, if isprimitive == False

 isprimitive: whether the procedure is primitive.
 """

 def __init__(self, name, arg_count, body, isprimitive=False, ...):
 self.name = name
 self.arg_count = arg_count
 self.body = body
 self.isprimitive = isprimitive
 ...
	

	

Write the primitives section of logo_apply. Remember that it might not always be the case that the
procedure will work on a given argument, so we should use some exception handling here.
	

def logo_apply(proc, args):
 if _______________:

 else:
 ... #You do not have to write this part

	

	

	

CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

5	

	

Environments
First, let’s review how lookup works for variables in environments:

1. Look for binding for variable of that name in the current frame.
2. If binding exists, return the value.
3. If not, look in your enclosing frame.
4. If you reach the global environment without finding a value, raise an error.
	

How are we going to implement this in an interpret? We first have to understand how to represent
environments and frames inside our program.

The concept of a frame is simple - a frame tells us variables and their values. Thus we can think
of a frame as a set of bindings. We will implement a frame as a dictionary, whose keys are
variables names and values are the variables’ values in that frame. For example, consider the
following:
	

? to qux :a :b :c
 output (sum :a :b :c)
 end
? qux 1 2 3

When we call qux 1 2 3, the frame generated by that call can be represented as
{‘a’ : 1, ‘b’ : 2, ‘c’ : 3}.
	

Now that we’ve defined frames, it’s intuitive to define an environment as a list of frames. The list is
ordered, and we denote one end of the list to be the current frame, and the other end to be the
global frame. Each frame is adjacent to the frame that points to it, and the frame that it points to.

Suppose we made these calls in logo:
? to garply :m
 output foo :m*2
 end
? to foo :m
 output bar :m/2
 end
? to bar :n
 output 5
 end
? show garply 4
	

1. Just before garply finishes outputting it’s result, what does the list of frames look like?
	

	

	

	

	

	

	

	

	

CS61A	
 Fall	
 2011	
 –	
 Akihiro,	
 Stephanie,	
 Tom,	
 Eric	
 K.,	
 Eric	
 T.,	
 Steven,	
 Aditi,	
 Richard,	
 Hamilton,	
 and	
 Phillip	

6	

	

2. Finish the definition of the Environment class:

class Environment(object):
 """An environment holds procedure (global) and name bindings in frames."""
 def __init__(self, get_continuation_line=None):
 self.get_continuation_line = get_continuation_line
 self.procedures = load_primitives()
 ______________________ # The first frame is a list of the global frame

 def push_frame(self, frame):
 """Add a new frame, which contains new bindings."""

 def pop_frame(self):
 """Discard the last frame."""
