
CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 1

CS61A Notes – Week 14 – Concurrency

Notes adapted from Justin Chen, Chung Wu, and George Wang

On your computer, you often have multiple programs running at the same time. You might have your internet

browser open reading the latest Piazza posts, your instant messaging client open to talk to your friends about

the new homework assignment, Pandora open to stream some tunes, and maybe about a hundred other

programs running. But you only have one computer, and one CPU! How can you do so many things at once?

What actually happens is that the CPU switches between different processes very quickly, doing a little for

each process before moving on to the next, creating the illusion that the programs are running concurrently.

Today’s discussion is on parallelism, and the concurrency issues that might arise from having multiple

programs run simultaneously.

As a general note, parallel computing is extremely important in computer science today, because it is

becoming harder and harder to increase the speed of processors due to physical heat limitations. To achieve

more processing power, computers now utilize multiple processors - your computer probably has at least two

“cores” in its processor.

Decomposing a Python Statement

Before we can talk about concurrency, we need to first understand what happens under the hood when the
interpreter executes a Python statement.

Typically, a Python statement can cause the computer to

● Load certain values out of memory
● Compute a new value
● Store something back into memory

This is best illustrated by example. Look at the decomposition of Python statements below, and make sure you
understand them.

y = 5

x = y * 3

print(x)

store 5 -> y

load y: 5
compute y*3: 15
store 15 -> x

load x: 15
compute (call function print) 15

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 2

Questions:

>>> def make_withdraw(balance):

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 print('Insufficient funds')

 else:

 balance = balance - amount

 print(balance)

 return withdraw

 >>> w = make_withdraw(10)

Question 1)
What are all the possible pairs of printed statements that could arise from executing the following 2 lines?
Assume that the 2 function calls are executed in parallel.

>>> w(8)

>>> w(7)

Question 2)
Suppose that Steven, Aki, and Eric decide to pool some money together:

>>> balance = 100

Now suppose: Steven deposits $10, Aki withdraws $20, and Eric withdraws half of the money in the account by

executing the following commands:

Steven: balance = balance + 10

Aki: balance = balance - 2

Eric: balance = balance - (balance / 2)

a. List all the different possible values for balance after these three transactions have been completed,

assuming that the banking system forces the three processes to run sequentially in some order.

b. What are some other values that could be produced if the system allows the processes to be interleaved?

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 3

Protecting shared state

Parallel computing would not be very useful if unexpected and “incorrect” results occurred often when running

our programs. Luckily, there are ways to make sure that certain pieces of code are executed without being

interrupted.

Problems arise in parallel computation when one process influences another during critical sections of a

program.

Critical sections are sections of code that need to be executed as if they were a single instruction, but are

actually made of several statements. In order for a parallel computation to behave correctly in concurrent

situations, the critical sections need to have atomicity - a guarantee that these sections will not be interrupted

by any other code.

We will discuss several methods of synchronizing and serializing our code but they all share the same

underlying idea - they use variables in shared state as signals that all processes understand and respect.

Think of traffic lights at an intersection: the only thing that stops a driver at a red light is the shared

understanding that everyone will stop when they see a red light; there is no physical mechanism that actually

makes people stop.

Locks

Locks are shared objects that are used to signal that shared state is being read or modified. They can also be
referred to as a mutexes, which is short for “mutual exclusion.” In Python, a process can acquire and release
a lock, using the acquire() and release() methods respectively.

While a lock is acquired by a process, any other process that tries to perform the acquire() action will

automatically be made to wait until the lock becomes free. This way, only one process can acquire a lock at a

time. For a lock to protect a particular set of variables, all the processes need to be programmed to follow a

rule: no process will access any of the shared variables unless it owns that particular lock. In effect, all the

processes need to "wrap" their manipulation of the shared variables in acquire() and release() statements

for that lock.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 4

Question 1)
Protect the critical section of the make_withdraw function by acquiring and releasing the lock.

>>> from threading import Lock

>>> def make_withdraw(balance):

 balance_lock = Lock()

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 print("Insufficient funds")

 else:

 balance = balance - amount

 print(balance)

Question 2)
What are the possible pairs of printed values if the following code is now run?

 >>> w = make_withdraw(10)

>>> w(8) #these 2 lines are executed in parallel

>>> w(7) #these 2 lines are executed in parallel

Semaphores
Sometimes we want to grant more than one thread access to a resource. We use a synchronization construct

called a semaphore to accomplish this. Semaphores are similar to locks, except that they can be acquired

multiple times up to a limit.

The state of the semaphore starts at some natural number. Each time acquire is called, this state is

decremented by 1, and each time release is called, the state is incremented by 1. The semaphore has a

restriction that its state must be above 0. If we try to acquire the semaphore while its state is 0, then we will

wait until the acquire becomes legal (that is, until someone calls release).

As a comprehensive example of how to use locks and semaphores, here is an example of how we would

model a parking garage with a specific number of parking spots and two entrances using a semaphore. In our

parking garage,

● We are given car objects that want to enter and exit the garage

● A car cannot enter unless it is guaranteed to have a spot

● We want to keep a list of cars currently in the garage

● A car can always exit the garage

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 5

TOTAL_SPOTS = 10

open_spots = Semaphore(TOTAL_SPOTS)

cars_lock = Lock()

cars = []

def enter_garage(car):

 “entrances call this function when a car wants to enter”

open_spots.acquire()

lock.acquire()

 cars.append(car)

 lock.release()

def exit_garage(car):

 “entrances call this function when a car exits”

open_spots.release()

 lock.acquire()

 cars.remove(car)

 lock.release()

Condition Variables

A third commonly seen synchronization primitive is condition variable. They are variables that signal threads

when some condition is satisfied. We use condition variables by telling a thread to “go to sleep” and wait for the

condition variable. When that condition is satisfied, the condition variable notifies the thread and “wakes it up”

so it can continue execution.

Here is the parking garage example rewritten using a condition variable.

TOTAL_SPOTS = 10
can_enter = Condition()
spots_lock = Lock()
open_spots = TOTAL_SPOTS
cars_lock = Lock()
cars = []

def enter_garage(car):
 “entrances call this function when a car wants to enter”

spots_lock.acquire()
while (open_spots < 1):

spots_lock.release()
can_enter.wait()

spots_lock.acquire()

open_spots -= 1

spots_lock.release()

lock.acquire()
 cars.append(car)
 lock.release()

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip Page 6

def exit_garage(car):
 “entrances call this function when a car exits”

spots_lock.acquire()
open_spots -= 1
spots_lock.release()

 lock.acquire()
 cars.remove(car)
 lock.release()
 can_enter.notify()

Deadlock

Deadlock is a situation that occurs when two or more processes are stuck, waiting for each other to finish.

Fill in the following code such that if compute() and anti_compute() are run in parallel, then deadlock might

occur.

>>> x_lock = Lock()

>>> y_lock = Lock()

>>> x = 1

>>> y = 0

>>> def compute():

 y = x + y

 x = x * x

>>> def anti_compute():

 y = y - x

 x = sqrt(x)
