
CS61A Notes – Week 8: OOP Below the Line, Multiple Representations, and Generic Functions

So far, we've been working with objects by defining classes and creating instances. Now, we will dive
below the abstraction barriers that object-oriented programming creates to see how we can implement
an object system. We'll also take a look at implementing data types using multiple representations and
generic functions for working with many different, but similar data types.

OOP Below the Line

The python OOP system probably seems pretty magical right now. OOP is flexible enough to allow
you to do a wide variety of things, while still being simple and intuitive to use. Today we are going to
explore how one might implement an OOP system.

The first thing we should ask ourselves is, fundamentally, what is it that we need objects to be able to
do? Surprisingly, we can boil it down to three basic tasks - we need to be able to set the value of an
attribute of an object, we need to be able to get the value of an attribute of an object (remember:
methods, i.e. functions, are values too!), and we need to be able to make (instantiate) new objects.
One way that we can implement all three tasks is to use a dispatch dictionary.

Let’s look at how we implement a single instance of a class:

def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

There’s a fair amount of stuff going on here, but the most important thing to note is that an instance is
simply represented by a dictionary that contains two keys: ‘get’ and ‘set’. When we want to get a value
of an attribute from an instance, we pass it a ‘get’ message (i.e. look up ‘get’), which returns to us an
internally defined get_value function that we can now invoke on the name of the attribute to retrieve its
value. This is helpful, as it means we no longer have to worry about how get_value is implemented.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
1

Now to move on to classes:

def make_class(attributes, base_class=None):
 """Return a new class."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)

 def set_value(name, value):
 attributes[name] = value

 def new(*args):
 return init_instance(cls, *args}

 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

The first thing we want to note is that make_class is strikingly similar to make_instance. There are
three differences to point out:

1. make_instance takes a class as argument. make_class takes two arguments, attribute, which
is a dictionary of default attributes, and base_class, which is the class you are inheriting from.

2. Whenever an instance is asked to get a name that isn’t in its own attribute dictionary, it will ask
its class. Whenever a class is asked to get a name that isn’t in its own attribute dictionary, it will
ask its base_class. Think about what this parallels in Python’s regular OOP.

3. A class understands an additional third key in its dictionary, ‘new’, which can be used to make
new instances of the class.

And here’s an example of using make_class to define the Account class:

def make_account_class():
 """Return the Account class."""

 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)

 def deposit(self, amount):
 """Increase the account balance by amount."""
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
2

 def withdraw(self, amount):
 """Decrease the account balance by amount."""

 return make_class({'__init__': __init__, 'deposit': deposit,
'withdraw': withdraw, 'interest': 0.02})

Questions
1. In which attributes dictionary are method definitions stored? (instance or class dictionary)

2. The definition of make_account_class above is incomplete. Fill in the definition of withdraw to
complete it.

3. Using make_class, redefine the Person class from lab last week. Here’s the regular OOP
version for reference:

class Person(object):

 def __init__(self, name):
 self.name = name

 def say(self, stuff):
 return stuff

 def ask(self, stuff):
 return self.say("Would you please " + stuff)

 def greet(self):
 return self.say("Hello, my name is " + self.name)

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
3

Multiple Representations

The ability to represent data using different representations without breaking the modularity of a
program rests on our ability to define a common message interface for the data type.

So what exactly is an interface? An interface is the set of messages that a data type understands and
can respond to. If we are talking about an object, then we can say that its interface is made up of all of
its methods and attributes. For instance, the interface for the Person class defined in the previous
section consists of the name attribute, the say, ask, and greet methods, as well as the attributes and
methods of its ancestor classes.

When implementing a common interface for an abstract data type that has multiple representations,
there must be a subset of messages that both representations understand. This set of common
messages is the common interface. A system that uses multiple data representations and is designed
with common interfaces is modular because one can add any number of different representations
without needing to change code already written. All the implementer needs to do is to ensure that the
new representation understands the messages required by the interface.

Questions

1. What do python strings, tuples, lists, dictionaries, ranges, etc all have in common? Hint: What
happens when you toss one of these data types into a for loop?

>>>for elem in [3, 4, 5]:
... print(elem)
3
4
5

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
4

>>>for elem in {3:’a’, 4:’b’, 5:’c’}:
... print(elem)
3
4
5

2. Why can’t you put something else, say an integer, into the for loop?

>>>for elem in 5:
… print(elem)
Error!

3. Suppose that these datatypes all implement a common interface called Iterable that expects the
messages 'current' and 'next'. The ‘current’ attribute starts out being the first element in the datatype.
Each time we pass the ‘next’ message to the datatype, current becomes the “next” element in the
Iterable datatype. If ‘current’ is the last element, then passing ‘next’ will cause ‘current’ to be set to
None. Write a code snippet that can implement a for loop that prints out each element using this
common interface. You can assume that the datatype understands dot notation. (The task here is
simple, but the ideas are important. We can use this common interface to iterate over both lists,
tuples, and ranges, which are sequences, as well as dictionaries, which are NOT sequences.)

data = create_data()
while :

4. After acing CS61A and becoming a renowned professor, you invent a new datatype with magical
properties. Because of the fond memories you have of your first computer science course at Berkeley,
you decide that the new datatype should implement the Iterable interface described during your 8th
week discussion section. On a high level, what do you need to do?

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
5

Generic Operators

In the previous section, we saw how to work with multiple representations of data, by forcing each of
the representations to use a common method interface. But suppose we wanted to generalize this
further. Could we write functions that work with arguments that don’t even work with a common
interface?

We are going to employ type dispatching. The idea: our generic functions will see arguments of
various data types. We can inspect what type of data the argument is. Now suppose we have been
keeping a table that holds functionality for interacting with specific data types. We can simply look up
the argument’s data type in the table, which will return to us a function that we know will work with the
argument’s data type.

Revisiting the complex number example, we have:

def type_tag(x):
 return type_tag.tags[type(x)]

type_tag.tags = {ComplexRI: 'com', ComplexMA: 'com', Rational: 'rat'}

Now type_tag.tags is a dictionary that associates data types (specifically, a class name) with a key
word that we can use to look up the type tag.

Next, we can implement a generic add function:

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

add.implementations = {}
add.implementations[('com', 'com')] = add_complex
add.implementations[('com', 'rat')] = add_complex_and_rational
add.implementations[('rat', 'com')] = lambda x, y:
add_complex_and_rational(y, x)
add.implementations[('rat', 'rat')] = add_rational

So what happens when we call add(ComplexRI(2, 3), ComplexRI(4, 5))?

Let’s refer to the two complex numbers as z1 and z2. type_tag looks up the tag for each them and
returns ‘com’ and ‘com’. We then look up (‘com’, ‘com’) in our table of supported implementations of
add and see that we should use add_complex. We then invoke add_complex(z1, z2) which works
without a hitch because all the data types match up.

Question: The TAs have broken out in a cold war; apparently, at the last midterm-grading
session, someone ate the last piece of sushi and refused to admit it. It is near the end of the
semester, and John really needs to enter the grades. Unfortunately, the TAs represent the
grades of their students differently, and refuse to change their representation to someone

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
6

else’s. John has asked you to look into writing generic functions for Hamilton’s and Richard’s
student records.

1. Hamilton and Richard have agreed to release their implementations of student records, which are
given below:

class HN_record(object):
 """A student record formatted via Hamilton's standard"""
 def __init__(self, name, grade):
 “””name is a string containing the student’s name, grade is a

grade object”””
 self.student_info = [name, grade]

class RL_record(object):
 """A student record formatted via Richard's standard"""
 def __init__(self, name, grade):
 “””name is a string containing the student’s name, grade is a grade

object”””
 self.student_info = {'name': name, 'grade': grade}

Write functions get_name and get_grade, which take in a student record and return the name and
grade, respectively.

2. Hamilton and Richard also use their own grade objects to store grades. Here are the definitions for
their grade class:

class HN_grade(object):
 def __init__(self, total_points):
 if total_points > 90:
 letter_grade = 'A'
 else:
 letter_grade = 'F'
 self.grade_info = (total_points, letter_grade)

class RL_grade(object):
 def __init__(self, total_points):
 self.grade_info = total_points

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
7

John needs you to write a function compute_average_total, which takes in a list of records (that could
be formatted via either standard) and computes the average total points of all the students in the list.

3. Lastly, John needs you to convert all student records into the format that he uses. Unlike Hamilton
and Richard, John is actually helpful and provides the class definition of his formatted student records.
Unfortunately, his email was corrupted so you can only see the first few lines of his class definition:

class JD_grade(object):
 """A student record formatted via John's standard"""
 def __init__(self, name_str, grade_num):
 """NOTE: name_str must be a string, grade_num must be a number"""

 O#F3jrjfw%783023$*($#%)@NIFVN#*R#k329r9F#jrPfj3sh83

Write a function convert_to_JD which takes a list of student records formatted either using Hamilton’s
or Richard’s standard, and returns a list of the same student records but now formatted using John’s
standard.

CS61A Fall 2011 – Akihiro, Stephanie, Tom, Eric K., Eric T., Steven, Aditi, Richard, Hamilton, and Phillip
8

