61A Lecture 3

Wednesday, August 31

Lightning Review: Expressions

Primitive expressions: 2 add ‘hello'

Number Name String

Call expressions:

add (2 , 3)

Operator Operand 0 Operand 1

One big
nested call
expression

mul(add(2, mul(4, 6)), add(3, 5))

Life Cycle of a User-Defined Function

Formal parameter What happens?

Return

Defining: I
9 expression

Function created
Body stored

Name bound
operand: 2+2 Op's evaluated
argument: 4 Function called

Calling/Applying: 4 - New frame!

re((x:

h - Params bound
return mul(x, x) M16:
+« Body evaluated

Cast of Characters: Environment Diagrams

Binding Frames:

A name is bound to a value

A frame is a rectangle
that contains bindings

In a frame, there is at most
one binding per name

Environments:

An environment is a sequence
of frames

So far, environments only have
at most two frames

(Friday: longer sequences)

An Environment is a Sequence of Frames

.» Environments (Memory):

muls —-- : i
4:0%) Frames link to each other
e frame :
S : An environment is a sequence

égof frames
i An environment is a first frame,

’(::>p1us the frames that follow

An environment is a first frame,
plus the sequence of frames that

C follow
An environment is a first frame,
plus the environment that follows

i< New environment

An Expression is Evaluated in an Environment

.» Environments (Memory):
| The global Frames link to each other
o frame
NV — An environment is a sequence
of frames

An environment is a first frame,
plus the environment that follows

Expressions (Program):

Expressions are Python code

Not part of an environment

They are evaluated in an
environment to yield a value

(Return expression)

Multiple Environments in One Diagram!

Every call to a
user—-defined function

creates a new
mul(a,b): local frame
)
v

square(x):

return mul(x, x)

81

square(square(3)) from operator import mul
. def square(x):
q return mul(x, x)
‘n p square(square(3))

Names Have No Meaning Without Environments

A name evaluates

M to the value
mul: —\J/—, bound to that
" name
D mul(a,b):
X
' ...1n the
‘,f.quare: . earliest frame

- of the current
square(x): environment

N

Ll o
B i return mul(x, x)
H

:

.

:

:

.

.+.1in which that
name is found

from operator import mul
def square(x):
return mul(x, x)
p square(-2)

Formal Parameters

def square(x): def square(y):

Shadowing Names

def square(muly= If we use this
return mul(mul, mul) |formal parameter

vs
return mul(x, x) return mul(y, y) B square(-2)
——O @
mul:; ——— mul:; ———
;—;?;—ij—] Formal parameter ;—;?;—ij—]
v utta,bl: names stay local ree e
) to their frame)
square: — square: —
I\ A square(__): |_ I\ A square(mul):
o _1 return mul(__, _)) _1 return mul(mul, mul)
: muls -2 :
é square:A E
G>“““““[:::::]w from operator import mul v G>———————————{::::::l] q q
“square(-2) . r “square(-2) Evaluating this call
[def sqgare(__{z) i [expression will fail
return mul(__,_) return muti__, — _'--_-_----Q return mul(mul,mul)
p square(-2) - [}
Python Feature Demonstration Statements

<Demo>
Operators
Multiple Return Values
Docstrings
Doctests
Default Arguments
Statements

</Demo>

A statement
is executed by the interpret

to perform an action

Compound statements:

The first header
determines a
statement’s type

The header of a clause
“controls” the suite
that follows

<separating header>:
<statement>
<statement> def statements are

compound statements

Compound Statements

Compound statements:

A suite is a sequence

<header>:
istatenents P of statements
i <statement>

'

<se.5Féfiﬁ'”ﬁééaér>' To “execute” a suite
P 9) means to execute its

< >
<:E2;:$:2E> sequence of statements,
in order

Execution Rule for a sequence of statements:

* Execute the first

* Unless directed otherwise, execute the rest

Local Assignment

Assignment binds names
in the first frame of
the current environment

percent_difference(x, y): [__

=

def percent_difference(x, y):

percent_difference

P difference = abs(x-y)
return 100 x difference / x
percent_difference(40, 50)

Conditional Statements

def absolute_value(x):
"""Return the absolute value of x."""

if x > 0:

1 statement, return x
3 clauses, elif x == 0:
3 headers, return @

3 suites else:
return -x

Execution rule for conditional statements:

Each clause is considered in order.
1. Evaluate the header's expression.

2. If it is a true value, execute the suite & skip the rest.

Boolean Contexts

def absolute_value(x):
"""Return the absolute value of x."""
if x > 0:
return x
elif x == 0:
return 0
else:
return -x

George Boole

Boolean Contexts

def absolute_value(x):
"""Return the absolute value of x."""

if (x> 0
return x
elif(x == @ Two boolean
return 0 contexts
else:
return -x
o
George Boole
False values in Python: False, @, ‘', None (more to come)

True values in Python: Anything else (True)

Read Section 1.5.4!

lteration

' pi, total =0, 0

NF it (D i
%’ .] total:
= Bpi=i+1

2 Bpptotal = total + i \

Execution rule for while statements:
1. Evaluate the header’s expression.
2. If it is a true value,

execute the (whole) suite,
then return to step 1.

The Fibonacci Sequence

A

am
W

— 1

def fib(n):
""""Compute the nth Fibonacci number, for n >= 2."""
pred, curr =0, 1 # First two Fibonacci numbers
k =2 # Tracks which Fib number is curr
while k < n:
p pred, curr = curr, pred + curr
k=k+1

return curr

Project 1: Pig

(Demo)

