
61A Lecture 3

Wednesday, August 31

Lightning Review: Expressions

2

Primitive expressions:

Call expressions:

2 add 'hello'

add (2 , 3)

Operator Operand 0 Operand 1

mul(add(2, mul(4, 6)), add(3, 5))
One big

nested call
expression

Number Name String

Life Cycle of a User-Defined Function

3

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

Function created
Body stored
Name bound

operand: 2+2
argument: 4

Op's evaluated
Function called

What happens?

operator: square
function: square

Signature

Intrinsic name

4

16

New frame!
Params bound
Body evaluated

Argument

Return value

Cast of Characters: Environment Diagrams

4

Frame

a:
b:

Name 2 Value

Binding

A name is bound to a value

A frame is a rectangle
that contains bindings

5

In a frame, there is at most
one binding per name

Frames:

Environments:

An environment is a sequence
of frames

So far, environments only have
at most two frames

(Friday: longer sequences)

The global
frame

Local
frame

Environment

mul:
...

x:

New environment

An Environment is a Sequence of Frames

5

mul:
...

x:

Environments (Memory):

An environment is a sequence
of frames

Local
frame

Frames link to each other

An environment is a first frame,
plus the frames that follow

An environment is a first frame,
plus the sequence of frames that
follow

An environment is a first frame,
plus the environment that follows

...

First
frame

Existing
environment

The global
frame

Extends

An Expression is Evaluated in an Environment

6

mul:
...

x:

Environments (Memory):

Local
frame

Expressions (Program):

Expressions are Python code

Return expression

Value

They are evaluated in an
environment to yield a value

Not part of an environment

An environment is a sequence
of frames

Frames link to each other

An environment is a first frame,
plus the environment that follows

The global
frame

square(2)

Call expression

return mul(x, x)

square(square(3))

square(3)

Multiple Environments in One Diagram!

7

mul:

square

x: 3

square:

square(x):

return mul(x, x)

... mul(a,b):

from operator import mul
def square(x):
 return mul(x, x)
square(square(3))

square

x: 9

9

81

Every call to a
user-defined function

creates a new
local frame

Names Have No Meaning Without Environments

8

mul:

square:

square(x):

return mul(x, x)

square(-2)

... mul(a,b):

from operator import mul
def square(x):
 return mul(x, x)
square(-2)

square

A name evaluates
to the value
bound to that
name

...in the
earliest frame
of the current
environment

...in which that
name is found

square

return mul(x, x)

x: -2

mulx

Formal Parameters

9

def square(x):
 return mul(x, x)

def square(y):
 return mul(y, y)

square(-2)
4

return mul(__,__)

vs

Formal parameter
names stay local
to their frame

from operator import mul
def square(__):
 return mul(__, __)
square(-2)

square

__: -2

Local
frame

return mul(__, __)

square:

square(__):

...

mul:
mul(a,b):

Shadowing Names

10

def square(mul):
 return mul(mul, mul)
square(-2)

square

square(-2)

mul: -2

square:

square(mul):

return mul(mul, mul)

return mul(mul,mul)

...

mul:
mul(a,b):

If we use this
formal parameter

Evaluating this call
expression will fail

Care
ful!

Python Feature Demonstration

<Demo>

Operators

Multiple Return Values

Docstrings

Doctests

Default Arguments

Statements

</Demo>

11

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statements:

Statements

12

A statement

is executed by the interpret

to perform an action

Statement

Suite

Clause
The first header
determines a
statement’s type

The header of a clause
“controls” the suite
that follows

def statements are
compound statements

Compound Statements

13

Compound statements:

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Execution Rule for a sequence of statements:

• Execute the first

• Unless directed otherwise, execute the rest

Suite

A suite is a sequence
of statements

To “execute” a suite
means to execute its
sequence of statements,
in order

Local Assignment

 def percent_difference(x, y):

 difference = abs(x-y)

 return 100 * difference / x

percent_difference(40, 50)

14

percent_difference:
...

percent_difference(x, y):
...

percent_difference

x: 40
y: 50

difference: 10

Assignment binds names
in the first frame of

the current environment

Conditional Statements

Execution rule for conditional statements:

15

def absolute_value(x):
 """Return the absolute value of x."""
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites

Each clause is considered in order.

1. Evaluate the header's expression.

2. If it is a true value, execute the suite & skip the rest.

Boolean Contexts

16

def absolute_value(x):
 """Return the absolute value of x."""
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

George Boole

Boolean Contexts

17

def absolute_value(x):
 """Return the absolute value of x."""
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

Two boolean
contexts

False values in Python: False, 0, ‘’, None

True values in Python: Anything else (True)

(more to come)

George Boole

Read Section 1.5.4!

Iteration

18

1. Evaluate the header’s expression.

2. If it is a true value,
 execute the (whole) suite,
 then return to step 1.

Execution rule for while statements:

i, total = 0, 0

while i < 3:

 i = i + 1

 total = total + i

i:
total:

0
1
2
3
6

pred:
curr:

...

The Fibonacci Sequence

def fib(n):

 """Compute the nth Fibonacci number, for n >= 2."""

 pred, curr = 0, 1 # First two Fibonacci numbers

 k = 2 # Tracks which Fib number is curr

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

19

0, 1, 1, 2, 3, 5, 8, 13, ...

Project 1: Pig

20

(Demo)

