
61A Lecture 5

Wednesday, September 7

Office Hours: You Should Go!

You are not alone!

2

http://inst.eecs.berkeley.edu/~cs61a/fa11/www/staff.html

Reminder: Multiple Assignment & Return Values

3

61A 003 Control_div.py Page 1

"""Functions for exact integer division."""

from operator import floordiv, mod

def divide_exact(n, d):
 """Return the quotient and remainder of dividing n by d.

 >>> q, r = divide_exact(13, 5)
 >>> q
 2
 >>> r
 3
 """
 return floordiv(n, d), mod(n, d)

Multiple return values,
separated by commas

Multiple assignment
to two names

Integer division,
which rounds down

Integer remainder
after dividing

The Structure of Project 1

4

def play(...):
 while game is not over:
 get a plan (from the current player's strategy)
 call take_turn with a dice and plan
 return winner

def take_turn(...):
 while turn is not over:
 get an action (from plan) and outcome (from dice)
 call an action
 return points scored during the turn

Two functions implement the game simulation Warning!
Pseudo-code
(not code)

The Structure of Project 1

5

Four types of functions are involved in simulating game

Domain Range

Action (integer, integer) (integer, integer, boolean)

Plan integer Action

Strategy (integer, integer) Plan

Dice No arguments integer

Two arguments Three return values

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language.

6

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Review: Summation Example

7

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 3) / (k * 4 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Environments Enable Higher-Order Functions!

8

Functions as arguments:

Functions as return values:

Our current environment model handles that!

We'll give an example of how

We need to extend the model a little

Functions need to know where they were defined

Almost everything stays the same

Names and Environments with Functional Values

9

def apply_twice(f, x):
 return f(f(x))

def square(x):
 return x * x

apply_twice(square, 2)

apply_twice:

square:

square(x):

return x * x

apply_twice(f, x):

return f(f(x))

apply_twice(square, 2)

return f(f(x))

x: 2
f:

16

square2
4square4

16

square(-2)

Applying User-Defined Functions

10

x: -2
square

square:

def square(x):
 return x * x
square(-2)

square(x):

return x * x

4

return x * x

...

The first frame of
the environment in
which the function

was defined

Functions Associated with the Global Frame

11

x: -2
square

square:

def square(x):
 return x * x
square(-2)

square(x):

return x * x

square(-2)
4

return x * x

...
Associated with the

global frame

This is the
global frame

Locally Defined Functions: Example

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 3) / (k * 4 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

A function that
returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

Functions defined within other function bodies
are bound to names in the local frame

Locally Defined Functions: Call Expressions

13

make_adder(1)(2)

def make_adder(n):
 def adder(k):
 return k + n
 return adder
make_adder(1)(2)

make_adder(1) (2)

Operator Operand 0

An expression
that evaluates
to a function

An expression
that evaluates
to any value

make_adder(1)(2)

Locally Defined Functions: Environments

14

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
make_adder(1)(2)

make_adder(n):
...

3

make_adder(1)

n: 1

make_adder

adder:

adder(k):

return k + n
k: 2
adder

return k + n

Associated with
a local frame

Apply
adder
to 2

n

...

make_adder:

make_adder(n):

compose1:
...

The Environment for Function Composition

15

1

make_adder

adder:

adder(k):

return k + n

n:

def compose1(f, g):
 def h(x)
 return f(g(x))
 return h
a1 = make_adder(1)
a2 = make_adder(2)
compose1(a1, a2)(3)

2

make_adder

adder:

adder(k):

return k + n

n:

a1:
a2:

f:
g:

compose1

adder
k: 5

adder
k: 3

h

x: 3
h:

h(x):
return f(g(x))

(Demo)

Lambda Expressions

16

>>> ten = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

and body "return x * x"
with formal parameter x

A function

Lambda expressions are rare in Python, but important in general

Notice: no "return"

Must be a single expression

More Higher-Order Function Examples

(Demo)

17

