61A Lecture 5

Wednesday, September 7

Office Hours: You Should Go!

You are not alone!

http://inst.eecs.berkeley.edu/~cs6la/fall/www/staff.html

Reminder: Multiple Assignment & Return Values

Integer remainder
after dividing

Integer division,
which rounds down

def divide exact(n, d):
"""Return the quotient and remainder of dividing n by d.

>>>1
>>> g

§>> r Multiple assignment
3 to two names

loordiv(n, d), mod(n, d :

return |

Multiple return values,
separated by commas

The Structure of Project 1

Two functions implement the game simulation Warning!
Pseudo—-code
(not code)

def play(...):

while game is not over:
get a plan (from the current player's strategy)
call take_turn with a dice and plan

return winner

def take_turn(...):
while turn is not over:
get an action (from plan) and outcome (from dice)
call an action

return points scored during the turn

The Structure of Project 1

Four types of functions are involved in simulating game

Domain Range
Action i :

(Three return values)
Plan integer Action
Strategy (integer, integer) Plan

Dice No arguments integer

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as
values in our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher-order functions:
e Express general methods of computation
e Remove repetition from programs

e Separate concerns among functions

Review: Summation Example

Function of a single J

defcube(k) ------------------------ {argument (not called term)
return pow(k, 3)

- A formal parameter that
def summation(n, K will be bound to a function
"""Sum the fi¥s§t n Terms of a sequence.

{225 7
T The cube function is passed
total, k = 0, 1 as an argument value
while k <= n:
total, k = total + iterm(k);, k + 1

return total A

The function bound to term
gets called here

(0+ 13 + 23 + 33 +43 +55 J

Environments Enable Higher-Order Functions!

Functions as arguments:
Our current environment model handles that!

We'll give an example of how

Functions as return values:
We need to extend the model a little
Functions need to know where they were defined

Almost everything stays the same

Names and Environments with Functional Values

apply_twice: v

apply_twice(f, x):
square: —
d return f(f(x))
x square(x):

return x *x x

f: é T
2 : def apply_twice(f, x):
' : return f(f(x))
remie 16
: ﬁDapply_tw1ce(square, 2) |

e (% return: f(f(x‘

/

i ()

def square(x):
return x * Xx

I p apply_twice(square, 2)

Applying User-Defined Functions

The first frame of

the environment in

which the function
was defined

square:

square(x):

return x * x

def square(x):

square(-2) return x * x

-2
""""" quewm x e xJ|PI

Functions Associated with the Global Frame

This is the
4<®> global frame

square:

Associated with the
global frame

)

square(x)

return X % X

def square(x):
square(-2)

return x *x x

Locally Defined Functions: Example

Functions defined within other function bodies
are bound to names in the local frame

{ A function that J

returns a function

3 The name add_three is
bound to a function

A local
def statement

Can refer to names in
the enclosing function

return adder

Locally Defined Functions: Call Expressions

make_adder (1) (2)

make_adder(1) (2)

Operator Operand @

An expression An expression

that evaluates that evaluates
to a function to any value

def make_adder(n):
def adder(k):

return k + n

return adder
make_adder(1)(2)

Locally Defined Functions: Environments

W)

make_adder: def make_adder(n):
- <-. am

() def adder(k):

: make_adder(n): return k + n

—1 t) : . return adder
n: B

make_adder(1)(2)

L RS
adder: - ——+———
nake_adder : .
N adder (k) : Associated with
- : return k + n a local frame

make_adder (1)

The Environment for Function Composition

/‘r"‘"‘\

—
composel: —

s

al: —— | ()] def h(x)
a2: make_adder(n): return f(g(x))
\\ fe return h

al = make_adder(1)

ne 1 a2 = make_adder(2)

make_adder: +—— - . def composel(f, g):

composel(al, a2)(3)

adder: - v \ %
make_adder adder (k) : (Demo)
O,

return k + n

adder n: 2

adder: j} \ /1\
make_adder .
adder’ P adder(k): \I/_

: return k + n
x: 3 9:
m h:

composel

)

53R
return f(g(x))

Lambda Expressions

An expression: this one
>>> ten = 10 evaluates to a number

I
x
*
X

>>> square Also an expression:

evaluates to a function

Fi: Notice: no "return")

with formal parameter x

and body "return x x x"

>>> square

A function

>>> square(4)
16 (Must be a single expression)

Lambda expressions are rare in Python, but important in general

More Higher-Order Function Examples

(Demo)

