
61A Lecture 7

Monday, September 12

Sunday, September 11, 2011



Pig Contest Rules

• The score for an entry is the sum of win rates against every 
other entry.

• All strategies must be deterministic functions of the current 
score!  Non-deterministic strategies will be disqualified.

• Winner: 3 points extra credit on Project 1

• Second place: 2 points

• Third place: 1 point

• The real prize: honor and glory

• To enter: submit a file pig.py that contains a function called 
final_strategy as assignment p1contest by Monday, 9/26
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Function Decorators

(demo)
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@trace1
def triple(x):
    return 3 * x
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Function Decorators

(demo)

3

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

Function 
decorator

Decorated 
function
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Function Decorators

(demo)

3

@trace1
def triple(x):
    return 3 * x

is identical to

def triple(x):
    return 3 * x
triple = trace1(triple)

Function 
decorator

Decorated 
function

Why not 
just use 
this?
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The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Practical 
guidance

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Practical 
guidance

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Testing functions stay small

Practical 
guidance

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Testing functions stay small

Practical 
guidance

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Isolates problems

Testing functions stay small

Practical 
guidance

Sunday, September 11, 2011



The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally
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Functions should be defined generally
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Separation of concerns

Revisions should require few code changes

Writing fewer lines of code saves you time
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Testing functions stay small
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The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Writing fewer lines of code saves you time

Isolates problems

Testing functions stay small

Copy/Paste has a steep price

These are 
guidelines,
not strict 

rules!

Practical 
guidance
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Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility
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From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility
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>>> from operator import mul
>>> def square(let):
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From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
        return mul(let, let)
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From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
        return mul(let, let)

Not stylish

Practical 
guidance

boolean turn_is_over

d dice

play_helper take_turn
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Functional Abstractions
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def square(x):
    return mul(x, x)
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Functional Abstractions

6

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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Functional Abstractions

6

What does sum_squares need to know about square to use it?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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• Square takes one argument.
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def square(x):
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Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
    return pow(x, 2)

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
    return pow(x, 2)

def square(x):
    return mul(x, x-1) + x

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
    return pow(x, 2)

def square(x):
    return mul(x, x-1) + x

If the name “square” were bound to a built-in function, 
sum_squares would still work identically 

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
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Data

7

http://www.skyrill.com/seatinghabits/

Front of the classroom

Student seating preferences at MIT
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Objects

(Demo)

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming: 

• A metaphor for organizing large programs

• Special syntax for implementing classic ideas

Abstractions
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Python Objects

In Python, every value is an object.

9
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Python Objects

In Python, every value is an object.
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• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things
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Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce ideas

• Create our own objects using the built-in object system

• Implement an object system using built-in objects

The next four weeks:
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Native Data Types

10

In Python, every object has a type.
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In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>
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Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native 
objects of these types.

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>
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Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native 
objects of these types.

2. There are built-in functions, operators, and methods to 
manipulate these objects.

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>
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Numeric Data Types
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>>> type(2)

<class 'int'>
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Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)
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Represents real numbers 
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Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

11

Represents integers
exactly

Represents real numbers 
approximately
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Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

11

Four

Represents integers
exactly

Represents real numbers 
approximately

(demo)
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Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)
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Care must be taken when computing with real numbers!
(Demo)
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Representing real numbers:
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Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)
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Representing real numbers:
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Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)
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Representing real numbers:

False in a Boolean contexts:
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Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
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Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:

13

Sunday, September 11, 2011



Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True

13
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

13
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

13

or approx_eq_2(y,x)
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):

13

or approx_eq_2(y,x)
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Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
        return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
        return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
        if x == y:
            return True
        return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):
        return approx_eq(f(x), g(x))

13

or approx_eq_2(y,x)
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Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes

14

Coming Soon: Data Abstraction
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