
61A Lecture 7

Monday, September 12

Sunday, September 11, 2011

Pig Contest Rules

• The score for an entry is the sum of win rates against every
other entry.

• All strategies must be deterministic functions of the current
score! Non-deterministic strategies will be disqualified.

• Winner: 3 points extra credit on Project 1

• Second place: 2 points

• Third place: 1 point

• The real prize: honor and glory

• To enter: submit a file pig.py that contains a function called
final_strategy as assignment p1contest by Monday, 9/26

2

Sunday, September 11, 2011

Function Decorators

(demo)

3

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

Function
decorator

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

Function
decorator

Decorated
function

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

is identical to

Function
decorator

Decorated
function

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Function
decorator

Decorated
function

Sunday, September 11, 2011

Function Decorators

(demo)

3

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Function
decorator

Decorated
function

Why not
just use
this?

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Testing functions stay small

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Testing functions stay small

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Isolates problems

Testing functions stay small

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Writing fewer lines of code saves you time

Isolates problems

Testing functions stay small

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Writing fewer lines of code saves you time

Isolates problems

Testing functions stay small

Copy/Paste has a steep price

Practical
guidance

Sunday, September 11, 2011

The Art of the Function

Each function should have exactly one job

Don't repeat yourself (DRY)

Functions should be defined generally

4

Separation of concerns

Revisions should require few code changes

Writing fewer lines of code saves you time

Isolates problems

Testing functions stay small

Copy/Paste has a steep price

These are
guidelines,
not strict

rules!

Practical
guidance

Sunday, September 11, 2011

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

Practical
guidance

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

Practical
guidance

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

Practical
guidance

boolean turn_is_over

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

Practical
guidance

boolean turn_is_over

d dice

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
 return mul(let, let)

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
 return mul(let, let)

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
 return mul(let, let)

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter tremendously for legibility

5

>>> from operator import mul
>>> def square(let):
 return mul(let, let)

Not stylish

Practical
guidance

boolean turn_is_over

d dice

play_helper take_turn

Sunday, September 11, 2011

Functional Abstractions

6

Sunday, September 11, 2011

Functional Abstractions

6

def square(x):
 return mul(x, x)

Sunday, September 11, 2011

Functional Abstractions

6

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

6

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

6

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

6

Yes

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

6

Yes

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

6

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

6

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

6

Yes

No

Yes

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

Yes

No

Yes

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
 return pow(x, 2)

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name “square”.

• Square computes the square of a number.

• Square computes the square by calling mul.

6

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically

Yes

No

Yes

No

What does sum_squares need to know about square to use it?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

Sunday, September 11, 2011

Data

7

http://www.skyrill.com/seatinghabits/

Front of the classroom

Student seating preferences at MIT

Sunday, September 11, 2011

http://www.skyrill.com/seatinghabits/
http://www.skyrill.com/seatinghabits/

Objects

8

Sunday, September 11, 2011

Objects

8

• Representations of information

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

Abstractions

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

Abstractions

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming:

Abstractions

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming:

• A metaphor for organizing large programs

Abstractions

Sunday, September 11, 2011

Objects

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming:

• A metaphor for organizing large programs

• Special syntax for implementing classic ideas

Abstractions

Sunday, September 11, 2011

Objects

(Demo)

8

• Representations of information

• Data and behavior, bundled together to create...

• Objects represent properties, interactions, & processes

• Object-oriented programming:

• A metaphor for organizing large programs

• Special syntax for implementing classic ideas

Abstractions

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

The next four weeks:

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce ideas

The next four weeks:

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce ideas

• Create our own objects using the built-in object system

The next four weeks:

Sunday, September 11, 2011

Python Objects

In Python, every value is an object.

9

• All objects have attributes

• A lot of data manipulation happens through methods

• Functions do one thing; objects do many related things

• Use built-in objects to introduce ideas

• Create our own objects using the built-in object system

• Implement an object system using built-in objects

The next four weeks:

Sunday, September 11, 2011

Native Data Types

10

In Python, every object has a type.

Sunday, September 11, 2011

Native Data Types

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>

Sunday, September 11, 2011

Native Data Types

Properties of native data types:

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>

Sunday, September 11, 2011

Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native
objects of these types.

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>

Sunday, September 11, 2011

Native Data Types

Properties of native data types:

1. There are primitive expressions that evaluate to native
objects of these types.

2. There are built-in functions, operators, and methods to
manipulate these objects.

10

In Python, every object has a type.

>>> type(today)
<class 'datetime.date'>

Sunday, September 11, 2011

Numeric Data Types

11

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

11

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

11

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

11

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

11

Represents integers
exactly

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

11

Represents integers
exactly

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

11

Represents integers
exactly

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

11

Represents integers
exactly

Represents real numbers
approximately

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

11

Represents integers
exactly

Represents real numbers
approximately

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

11

Represents integers
exactly

Represents real numbers
approximately

Sunday, September 11, 2011

Numeric Data Types

Three numeric types in Python:

>>> type(2)

<class 'int'>

>>> type(1.5)

<class 'float'>

>>> type(1+1j)

<class 'complex'>

11

Four

Represents integers
exactly

Represents real numbers
approximately

(demo)

Sunday, September 11, 2011

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Sunday, September 11, 2011

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

Care must be taken when computing with real numbers!
(Demo)

12

Representing real numbers:

False in a Boolean contexts:

0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

1/3 =

Sunday, September 11, 2011

http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Working with Real Numbers

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:
 return True

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:
 return True
 return approx_eq_1(x, y) or approx_eq_2(x, y)

13

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:
 return True
 return approx_eq_1(x, y) or approx_eq_2(x, y)

13

or approx_eq_2(y,x)

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:
 return True
 return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):

13

or approx_eq_2(y,x)

Sunday, September 11, 2011

Working with Real Numbers

>>> def approx_eq_1(x, y, tolerance=1e-18):
 return abs(x - y) <= tolerance

>>> def approx_eq_2(x, y, tolerance=1e-7):
 return abs(x - y) <= abs(x) * tolerance

>>> def approx_eq(x, y):
 if x == y:
 return True
 return approx_eq_1(x, y) or approx_eq_2(x, y)

>>> def near(x, f, g):
 return approx_eq(f(x), g(x))

13

or approx_eq_2(y,x)

Sunday, September 11, 2011

Moral of the Story

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes

14

Sunday, September 11, 2011

Moral of the Story

Life was better when numbers were just numbers!

Having to know the details of an abstraction:

• Makes programming harder and more knowledge-intensive

• Creates opportunities to make mistakes

• Introduces dependencies that prevent future changes

14

Coming Soon: Data Abstraction

Sunday, September 11, 2011

