61A Lecture 8

Wednesday, September 14

Data Abstraction

- Compound objects combine primitive objects together

+ A date: a year, a month, and a day

sJawwedbouayd
11V

« A geographic position: latitude and longitude

« An abstract data type lets us manipulate compound
objects as units

- Isolate two parts of any program that uses data:
How data are represented (as parts)

How data are manipulated (as units)

sJawwedboad
1eaJ4n

- Data abstraction: A methodology by which functions
enforce an abstraction barrier between
representation and use

Rational Numbers

Rational Number Arithmetic

numerator
- Example: General Form:
denominator
Exact representation of fractions 3 3 9 nx ny nxny
— X — = — _— ES _— = —_—
A pair of integers D) 5 10 dx dy dxkdy
As soon as division occurs, the exact representation is lost!
Assume we can compose and decompose rational numbers:
3 3 21 nx ny nx*dy + nykxdx
. e TS = — _— + _— =
e numer(x): returns the numerator of x 2 5 10 dx dy dx*xdy
Comeatos ")
oid (x)i returns the denominator of x
Rational Number Arithmetic Implementation Tuples
def mul rat(x, y):
"""Multiply rational numbers x and y.""" N >>> pair = (1, 2) A tuple literal:
return(7)) Ti> g?lr Comma-separated expressions

def add rat(x, y):
"""Add rational numbers x and y.
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return make rat(nx * dy + ny * dx, dx * dy)

def eq rat(x, y):
"""Return whether rational numbers x and y are equal."""
return numer(x) * denom(y) == numer(y) * denom(x)

e make_rat(n, d) returns a rational number x

e numer(x) returns the numerator of X

e denom(x) returns the denominator of x

>>> X, y = pair
>>> X

"Unpacking" a tuple

>>> y

>>> from operator import getitem

>>> getitem(pair, 0) Element selection

>>> getitem(pair, 1)

More tuples next lecture

Representing Rational Numbers

def make rat(n, d):
"""Construct_ a

rational number x that represents n/d."""
return/ i

(Construct a tuple)

from operator import getitem

def numer(x):

"""Return the numerator of rational number x."""
return getitem(x, 0)

def denom(x):
"""Return_ th
return get

denominator of rational number x."""

(Select from a tuple)

Reducing to Lowest Terms

Example:

3 5 5 2 1 B
—_— x — =i — —_ 4 — = —
2 3 2 5 10 2
15 1/3 5 25 1/25 1
B — * _ = —_— —_— X = —
6 1/3 2 50 1/25 2

from fractions import gcd
def make rat(n, d):
"""Construct a rational number x that represents n/d in lowest terms."""

g =iged(n, d);

returi (177§, d/7g Greatest common divisor

Abstraction Barriers

Rational numbers in the problem domain

|

add_rat mul_rat eq_rat

:

Rational numbers as numerators & denominators

make_rat numer denom

|
|

Rational numbers as tuples

44444444444{ tuple getitem %44444444447

However tuples are implemented in Python

Violating Abstraction Barriers

Does not use
constructors

And no constructor!

What is Data?

- We need to guarantee that constructor and selector functions
together specify the right behavior.

- Rational numbers: If we construct x from n and d,
then numer(x)/denom(x) must equal n/d.

« An abstract data type is some collection of selectors and
constructors, together with some behavior conditions.

- If behavior conditions are met, the representation is valid.

You can recognize data types by behavior, not by bits

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

Constructors, selectors, and behavior conditions:

If a pair p was constructed from values x and y, then
e getitem_pair(p, @) returns x, and

e getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types. Not true for

rational
numbers

Functional Pair Implementation

{def make pair(x, y)
: "wiRg 2 i [y

This function

return x !
represents a pair

Constructor is a
higher-order function

def getitem pair(p, i):
Return the element at index i of pair p."""

Selector defers to
the object itself

Using a Functionally Implemented Pair

>>> p = make_pair(1, 2)
P -P ! As long as we do not violate
>>> getitem_pair(p, 0) the abstraction barrier,
1 ¢ -P P we don't need to know that
pairs are just functions

>>> getitem_pair(p, 1)
2

If a pair p was constructed from values x and y, then
e getitem_pair(p, @) returns x, and

e getitem_pair(p, 1) returns y.

This pair representation is valid!

