\square

61A Lecture 10

Wednesday，September 21

Representing Strings：the ASCII Standard

0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		！	＂	\＃	\＄	\％	\＆	＇	1	）	＊	＋	，	－	－	1
3	0	1	2	3	4	5	6	7	8	9	：	；	＜	＝	＞	？
4	＠	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	［	1	］	\wedge	－
6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	p	9	r	s	t	u	v	w	x	y	z	\｛	I	\}	\sim	DEL

－Layout was chosen to support sorting by character code
－Rows indexed 2－5 are a useful 6－bit（64 element）subset
－Control characters were designed for transmission

Strings are an Abstraction

Representing data：
'200' '1.2e-5' 'False' '(1, 2)'

Representing language：

```
＂＂י＂0！methinks how slow
This old moon wanes；she lingers my desires ，
Like to a step dame，or a dowager
```

Long withering out a young man＇s revenue．＂＇＂＇

Representing programs：

```
'curry = lambda f: lambda x: lambda y: f(x, y)'
```


Representing Strings：the Unicode Standard

－109，000 characters
－ 93 scripts（organized）
－Enumeration of character properties，such as case
－Supports bidirectional display order
－ 32 bits per character number
－A canonical name for every character

聱	聲	缶	聴	聵	聶	職	聸
	8072	803	88	3078	${ }_{8078}$	8 m	
｜建	腲	腳	胦	腵	腶	腷	腸
	812	${ }_{813}$	，	375	，	$8{ }_{8}$	8 878
䬶	色	艳	㪄	艵	艶	艷	幽
	88	073	874	${ }^{378}$	${ }_{878}$		878
荦	荲	营	荴	葱	获	荷	莩
\％ 81	$8{ }^{8}$	${ }^{83}$	887	875	${ }_{878}$	Wrn	${ }_{878}$
苳	䓠	葳	葴	葵	艼	苯	葸

U＋0058 LATIN CAPITAL LETTER X
U＋263a WHITE SMILING FACE
U＋2639 WHITE FROWNING FACE

＇（）＇＇${ }^{\prime}$＇

Strings are Sequences

```
>>> city = 'Berkeley'
>>> len(city)
8
l>> city[3] (k' An element of a string
```

Length．A sequence has a finite length．
Element selection．A sequence has an element corresponding to any non－negative integer index less than its length，starting at 0 for the first element．

```
>>> 'Berkeley' + ', CA'
'Berkeley, CA'
>>> 'Shabu ' * 
'Shabu Shabu '
```

String Membership Differs from Other Sequences

The＂in＂and＂not in＂operators match substrings
＞＞＞＇here＇in＂Where＇s Waldo？＂
True

Why？Working with strings，we care about words，not characters

The＂count＂method also matches substrings
＞＞＞＇Mississippi＇．count（＇i＇）
4
＞＞＞＇Mississippi＇．count（＇issi＇）

String Coercion

Any object can be＂coerced＂into a string．
Coercion doesn＇t change an object；it produces a corresponding object of a different type．
＞＞digits

How is string coercion implemented？October 10

Sequences as Conventional Interfaces

Consider two problems

＝Sum the even members of the first n Fibonacci numbers．
－List the letters in the acronym for a name，which includes the first letter of each capitalized word．
enumerate naturals：$\quad 1,2,3,4,5,6,7,8,9,10,11$ ．
map fib：
$0,1,1,2,3,5,8,13,21,34,55$.
filter iseven：
accumulate sum：

String Literals Have Three Forms

```
>>> 'I am string!'
'I am string!
"I've got an apostrophe"
```

```
>>> '您好'
```

>>> '您好'
'您好'

```
>>> "I've got an apostrophe" \(\quad\) Single- and double-quoted
    strings are equivalent
>>> ""י"'The Zen of Python
claims, Readability counts.
Read more: import this."""'
'The Zen of Pythoninclaims, "Readability counts."Nnead more:
import this. '
A backslash "escapes" the
    following character


Methods on Strings
```

>>> '1234'.isnumeric()

```
True
>>> 'rOBERT dE nIRO'.swapcase()
'Robert De Niro'
>>> 'snakeyes'. upper().endswith('YES')
True

\section*{Demo}

\section*{Sequences as Conventional Interfaces}

Consider two problems：
－Sum the even members of the first \(n\) Fibonacci numbers．
－List the letters in the acronym for a name，which includes the first letter of each capitalized word．
\begin{tabular}{|c|c|c|c|}
\hline enumerate words： & ＇University＇， & ＇California＇， & ＇Berkeley＇ \\
\hline & \(\triangle\) & \(\triangle\) & \(\triangle\) \\
\hline filter iscap： & ＇University＇， & ＇California＇， & ＇Berkeley＇ \\
\hline map first： & ＇U＇， & ＇C＇， & ＇B＇ \\
\hline accumulate tuple： & （＇U＇， & ＇C＇， & ＇B＇） \\
\hline
\end{tabular}

\section*{Mapping a Function over a Sequence}

Apply a function to each element of the sequence
>>> alternates \(=(-1,2,-3,4,-5)\)
>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

The returned value of map is an iterable map object

\section*{A constructor for the \\ built-in map type}

The returned value of filter is an iterable filter object

\section*{Generator Expressions}

One large expression that evaluates to an iterable object
(<map exp> for <name> in <iter exp> if <filter exp>)
- Evaluates to an iterable object.
- <iter exp> is evaluated when the generator expression is evaluated.
- Remaining expressions are evaluated when elements are accessed
(<map exp> for <name> in <iter exp>)

Precise evaluation rule introduced in Chapter 4.

Accumulation and Iterable Values

Iterable objects give access to some elements in order.

Many built-in functions take iterable objects as argument.
\begin{tabular}{ll} 
tuple & Return a tuple containing the elements \\
sum & Return the sum of the elements \\
min & Return the minimum of the elements \\
\(\max\) & Return the maximum of the elements
\end{tabular}

For statements also operate on iterable values.

\section*{Reducing a Sequence}

Reduce is a higher-order generalization of max, min, \& sum.
>>> from operator import mul
>>> from functools import reduce
>>> reduce(mul, (1, 2, 3, 4, 5))
120

Similar to accumulate from Homework 2

\section*{Demo}```

