
61A Lecture 11

Friday, September 23

A Function with Behavior That Varies Over Time

2

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument: amount to
withdraw

Second withdrawal
of the same amount

Return value:
remaining balance

Different
return value!

Where's this
balance stored?

Within the
function!

Persistent Local State

3

withdraw(amount):

function body
to be revealed
momentarily

balance: 100
withdraw:

make_withdraw:
withdraw:

make_withdraw(balance):

function body
to be revealed
momentarily

Local State via Non-Local Assignment

4

 def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name
"balance" nonlocal

Re-bind the
existing balance

name above

Demo

Local, Non-Local, and Global Frames

5

Non-local
frame

The global
frame

Non-local
frame

An environment

Local
frame

First
frame

Second
frame

First non-
local frame

The Effect of Nonlocal Statements

6

http://www.python.org/dev/peps/pep-3104/

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future references to that name refer to its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

The Many Meanings of Assignment Statements

7

x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in
a non-local frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a
non-local frame

Re-binds "x" to 2 in the first
non-local frame of the current
environment in which that name is
already bound.

turtle

mutant

mutant(y)

y, x = y+1, y+2
return ninja(y)/2

ninja(y)

Assignment Review: Teenage Mutant Ninja Turtles

8

def mutant(y):
 y, x = y+1, y+2
 return ninja(y)/2
def ninja(x):
 return x + 2
def turtle(x):
 return x * y + 2
y, ninja = 5, turtle
mutant(y)

y: 5

ninja:
turtle:

mutant:

return x * y + 2

x: 6

32

16

x: 7
6

mutant(y):
y, x = y+1, y+2
return ninja(y)/2

ninja(x):

return x + 2

turtle(x)

return x * y + 2

y: 5

Assignment Review: Teenage Mutant Ninja Turtles

9

def mutant(y):
 y, x = y+1, y+2
 return ninja(y)/2
def ninja(x):
 return x + 2
def turtle(x):
 return x * y + 2
y, ninja = 5, turtle
mutant(y)

• Bind mutant, ninja, and turtle to their respective functions

• Simultaneously: bind y to 5 and ninja to the turtle function

• Apply the mutant function to 5

• In the first frame, bind y to 6 and x to 7

• Look up ninja, which is bound to the turtle function

• Look up y, which is bound to 6

• Apply the turtle function to 6

• Look up x, which is bound to 6
in the local frame

• Look up y, which is bound to 5
in the global frame

• Return 32

• Return half the result: 16

Intrinsic
function name

make_withdraw
make_withdraw:

withdraw(amount):
...

balance:

make_withdraw

withdraw:

wd:

wd(5)

20

Environment Diagram of Withdraw

10

15

wd = make_withdraw(20)
wd(5)

15

nonlocal balance
if amount > balance:
 return 'Insufficient funds'
balance = balance - amount
return balance

amount: 5
withdraw

balance:

Calling a Withdraw Function Twice

11

make_withdraw
make_withdraw:

wd = make_withdraw(20)
wd(5)
wd(3)

amount: 5
withdraw

wd(5)
12

nonlocal balance
if amount > balance:
 return 'Insufficient funds'
balance = balance - amount
return balance

amount: 3
withdraw

withdraw(amount):
...

balance:

make_withdraw

withdraw:

wd:

15 12balance:

Creating Two Different Withdraw Functions

12

withdraw(amount):

make_withdraw
make_withdraw:

balance:

make_withdraw

12
withdraw:

wd:

wd = make_withdraw(20)
wd(5)
wd(3)
wd2 = make_withdraw(7)
wd2(6)

make_withdraw(7)

 def withdraw(amount):
 ...
 return withdraw

wd2:

balance: 7

make_withdraw withdraw(amount):
withdraw:

Creating Two Different Withdraw Functions

13

withdraw(amount):

make_withdraw
make_withdraw:

balance:

make_withdraw

12
withdraw:

wd:

wd = make_withdraw(20)
wd(5)
wd(3)
wd2 = make_withdraw(7)
wd2(6)

wd2:

withdraw(amount):

balance:

make_withdraw

7
withdraw:

wd2(6)
1

amount: 6
withdraw

1

nonlocal balance
if amount > balance:
 return 'Insufficient funds'
balance = balance - amount
return balance

balance:

The Benefit of Non-Local Assignment

•Ability to maintain some state that is local to a function,
but evolves over successive calls to that function.

•The binding for balance in the first non-local frame of the
environment associated with an instance of withdraw is
inaccessible to the rest of the program.

•An abstraction of a bank account that manages its own
internal state.

14

John's
Account

$10

Steven's
Account

$1,000,000

Multiple References to a Single Withdraw Function

15

withdraw(amount):

make_withdraw
make_withdraw:

balance:

make_withdraw

withdraw:

wd:

wd = make_withdraw(12)
wd2 = wd
wd2(1)
wd(1)

wd2:

amount: 1
withdraw

1112

wd2(1)

nonlocal balance
if amount > balance:
 return 'Insufficient funds'
balance = balance - amount
return balance

11

Multiple References to a Single Withdraw Function

16

withdraw(amount):

make_withdraw
make_withdraw:

balance:

make_withdraw

10
withdraw:

wd:

wd = make_withdraw(12)
wd2 = wd
wd2(1)
wd(1)

wd2:

amount: 1
withdraw

amount: 1
withdraw

1112

wd(1)

nonlocal balance
if amount > balance:
 return 'Insufficient funds'
balance = balance - amount
return balance

10

Sameness and Change

• So long as we never modify data objects, we can regard a compound
object to be precisely the totality of its pieces.

• A rational number is determined by its numerator and denominator.

• This view is no longer valid in the presence of change.

• Now, a compound data object has an "identity" that is something
more than the pieces of which it is composed.

• A bank account is still "the same" bank account even if we change
the balance by making a withdrawal.

• Conversely, we could have two bank accounts that happen to have the
same balance, but are different objects.

17

John's
Account

$10

Steven's
Account

$10

Referential Transparency, Lost

•An expression is referentially transparent if its value does
not change when we substitute one of its subexpression with
the value of that subexpression.

18

•Re-binding operations violate the condition of referential
transparency because they do more than return a value; they
change the environment.

•Two separately defined functions are not the same, because
changes to one may not be reflected in the other.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

