
61A Lecture 17

Friday, October 7

Today is Ada Lovelace Day

Ada Lovelace, born 1815, was a
writer, mathematician, and
correspondent of Charles Babbage

Charles Babbage designed the
"analytical engine"

Ada wrote its first program
(to compute Bernoulli numbers)

2

Images from Wikipedia

Generic Functions

An abstraction might have more than one representation

• Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations

• Some representations are better suited to some problems

A function might want to operate on multiple data types

3

Today's Topics:
• Generic functions using message passing

• String representations of objects

• Multiple representations of abstract data types

• Property methods

String Representations

An object value should behave like the kind of data it is
meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations

• The "str" is legible to humans
• The "repr" is legible to the Python interpreter

When the "str" and "repr" strings are the same, we're doing
something right in our programming language!

4

The "repr" String for an Object

The result of calling repr on the value of an expression is
what Python prints in an interactive session

5

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects don't have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (as a string)
that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

The "str" String for an Object

Human interpretable strings are useful as well

6

>>> import datetime

>>> today = datetime.date(2011, 10, 7)

>>> repr(today)

'datetime.date(2011, 10, 7)'

>>> str(today)

'2011-10-07'

Demo

Message Passing Enables Polymorphic Functions

Polymorhic function: A function that can be applied to many
(poly) different forms (morph) of data

str and repr are both polymorphic; they apply to anything

repr invokes a zero-argument method __repr__ on its argument

7

str invokes a zero-argument method __str__ on its argument

>>> today.__repr__()

'datetime.date(2011, 10, 7)'

>>> today.__str__()

'2011-10-07'

Implementing repr and str

The behavior of repr is slightly more complicated than
invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored (demo)

• Question: How would we implement this behavior?

The behavior of str:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string (demo)

• Question: How would we implement this behavior?

8

Interfaces

Message passing allows different data types to respond to the
same message

A shared message that elicits similar behavior from different
object classes is a powerful method of abstraction

An interface is a set of shared messages, along with a
specification of what they mean

Classes that implement __repr__ and __str__ methods that
return Python- and human-readable strings thereby implement an
interface for producing Python string representations

9

Multiple Representations of Abstract Data

Rectangular and polar representations for complex numbers

10

Most operations don't care about the representation

Some mathematical operations are easier on one than the other

(1, 1) (
√
2,

π

4
)

Arithmetic Abstraction Barriers

11

add_complex mul_complex

real imag magnitude angle

Complex numbers in the problem domain

Complex numbers as two-dimensional vectors

Rectangular
representation

Polar
representation

An Interface for Complex Numbers

All complex numbers should produce real and imag components

All complex numbers should produce a magnitude and angle

12

Demo

Using this interface, we can implement complex arithmetic

>>> def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

>>> def mul_complex(z1, z2):
 return ComplexMA(z1.magnitude * z2.magnitude,
 z1.angle + z2.angle)

The Rectangular Representation
The @property decorator allows zero-argument methods to be
called without the standard call expression syntax

13

 class ComplexRI(object):

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

math.atan2(y,x): Angle between
x-axis and the point (x,y)

Special decorator: "Call this
function on attribute look-up"

The Polar Representation

14

 class ComplexMA(object):

 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle

 @property
 def real(self):
 return self.magnitude * cos(self.angle)

 @property
 def imag(self):
 return self.magnitude * sin(self.angle)

 def __repr__(self):
 return 'ComplexMA({0}, {1})'.format(self.magnitude,
 self.angle)

Using Complex Numbers

Either type of complex number can be passed as either argument
to add_complex or mul_complex

15

>>> from math import pi

>>> add_complex(ComplexRI(1, 2), ComplexMA(2, pi/2))

ComplexRI(1.0000000000000002, 4.0)

>>> mul_complex(ComplexRI(0, 1), ComplexRI(0, 1))

ComplexMA(1.0, 3.141592653589793)

>>> def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

>>> def mul_complex(z1, z2):
 return ComplexMA(z1.magnitude * z2.magnitude,
 z1.angle + z2.angle)

Special Methods

Adding instances of user-defined classes use __add__ method

16

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)

ComplexMA(1.0, 3.141592653589793)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://diveintopython3.org/special-method-names.html

