
61A Lecture 17

Friday, October 7

Today is Ada Lovelace Day

Ada Lovelace, born 1815, was a 
writer, mathematician, and 
correspondent of Charles Babbage

Charles Babbage designed the 
"analytical engine"

Ada wrote its first program
(to compute Bernoulli numbers)
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Images from Wikipedia

Generic Functions

An abstraction might have more than one representation

• Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations

• Some representations are better suited to some problems

A function might want to operate on multiple data types
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Today's Topics:
• Generic functions using message passing

• String representations of objects

• Multiple representations of abstract data types

• Property methods 

String Representations

An object value should behave like the kind of data it is 
meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations

• The "str" is legible to humans
• The "repr" is legible to the Python interpreter

When the "str" and "repr" strings are the same, we're doing 
something right in our programming language!
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The "repr" String for an Object

The result of calling repr on the value of an expression is 
what Python prints in an interactive session
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>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects don't have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (as a string) 
that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

The "str" String for an Object

Human interpretable strings are useful as well
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>>> import datetime

>>> today = datetime.date(2011, 10, 7)

>>> repr(today)

'datetime.date(2011, 10, 7)'

>>> str(today)

'2011-10-07'

Demo



Message Passing Enables Polymorphic Functions

Polymorhic function: A function that can be applied to many 
(poly) different forms (morph) of data

str and repr are both polymorphic; they apply to anything

repr invokes a zero-argument method __repr__ on its argument
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str invokes a zero-argument method __str__ on its argument

>>> today.__repr__()

'datetime.date(2011, 10, 7)'

>>> today.__str__()

'2011-10-07'

Implementing repr and str

The behavior of repr is slightly more complicated than 
invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored (demo)

• Question: How would we implement this behavior?

The behavior of str:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string (demo)

• Question: How would we implement this behavior?
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Interfaces

Message passing allows different data types to respond to the 
same message

A shared message that elicits similar behavior from different 
object classes is a powerful method of abstraction

An interface is a set of shared messages, along with a 
specification of what they mean

Classes that implement __repr__ and __str__ methods that 
return Python- and human-readable strings thereby implement an 
interface for producing Python string representations
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Multiple Representations of Abstract Data

Rectangular and polar representations for complex numbers
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Most operations don't care about the representation

Some mathematical operations are easier on one than the other

(1, 1) (
√
2,

π

4
)

Arithmetic Abstraction Barriers
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add_complex  mul_complex

real  imag  magnitude  angle

Complex numbers in the problem domain

Complex numbers as two-dimensional vectors

Rectangular
representation

Polar
representation

An Interface for Complex Numbers

All complex numbers should produce real and imag components

All complex numbers should produce a magnitude and angle
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Demo

Using this interface, we can implement complex arithmetic

>>> def add_complex(z1, z2):
        return ComplexRI(z1.real + z2.real, 
                         z1.imag + z2.imag)

>>> def mul_complex(z1, z2):
        return ComplexMA(z1.magnitude * z2.magnitude, 
                         z1.angle + z2.angle)



The Rectangular Representation
The @property decorator allows zero-argument methods to be 
called without the standard call expression syntax
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    class ComplexRI(object):

        def __init__(self, real, imag):
            self.real = real
            self.imag = imag

        @property
        def magnitude(self):
            return (self.real ** 2 + self.imag ** 2) ** 0.5

        @property
        def angle(self):
            return atan2(self.imag, self.real)

        def __repr__(self):
            return 'ComplexRI({0}, {1})'.format(self.real,
                                                self.imag)

math.atan2(y,x): Angle between 
x-axis and the point (x,y)

Special decorator: "Call this 
function on attribute look-up"

The Polar Representation
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    class ComplexMA(object):

        def __init__(self, magnitude, angle):
            self.magnitude = magnitude
            self.angle = angle

        @property
        def real(self):
            return self.magnitude * cos(self.angle)

        @property
        def imag(self):
            return self.magnitude * sin(self.angle)

        def __repr__(self):
            return 'ComplexMA({0}, {1})'.format(self.magnitude,
                                                self.angle)

Using Complex Numbers

Either type of complex number can be passed as either argument 
to add_complex or mul_complex
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>>> from math import pi

>>> add_complex(ComplexRI(1, 2), ComplexMA(2, pi/2))

ComplexRI(1.0000000000000002, 4.0)

>>> mul_complex(ComplexRI(0, 1), ComplexRI(0, 1))

ComplexMA(1.0, 3.141592653589793)

>>> def add_complex(z1, z2):
        return ComplexRI(z1.real + z2.real, 
                         z1.imag + z2.imag)

>>> def mul_complex(z1, z2):
        return ComplexMA(z1.magnitude * z2.magnitude, 
                         z1.angle + z2.angle)

Special Methods

Adding instances of user-defined classes use __add__ method
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Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)

ComplexMA(1.0, 3.141592653589793)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://diveintopython3.org/special-method-names.html


