61A Lecture 18

Monday, October 10

Generic Functions, Continued

Generic Functions, Continued

A function might want to operate on multiple data types

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming
- Type coercion

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming
- Type coercion

What's different? Today's generic functions apply to multiple arguments that don't share a common interface

The Independence of Data Types

The Independence of Data Types
Data abstraction and class definitions keep types separate

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries
add_rat mul_rat

Rational numbers as numerators \& denominators

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries

How do we add a complex number and a rational number together?

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries

How do we add a complex number and a rational number together?

Rational numbers as
Complex numbers as two-dimensional vectors numerators \& denominators

There are many different techniques for doing this!

Rational Numbers, Now with Classes

Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator
class Rational(object):

Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd(numer, denom)
        self.numer = numer // g
        self.denom = denom // g
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator
class Rational(object):

```
def __init__(self, numer, denom):
    g}=\mp@code{gc(numer, denom);
    self.numer numerygg Greatest common
    self.denom = denom // g divisor
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd(numer, denom);
        self.numer = numer g
        self.denom = denom // g divisor
    def __repr__(self):
        return 'Rational({0}, {1})'.format(self.numer, self.denom)
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd(numer, denom);
        self.numer = numer"%
        self.denom = denom //
    def __repr__(self):
        \overline{return 'Rational({0}, {1})'.format(self.numer, self.denom)}
def add_rational(x, y):
    nx, dx = x.numer, x.denom
    ny, dy = y.numer, y.denom
    return Rational(nx * dy + ny * dx, dx * dy)
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g}=\mp@code{gc(numer, denom);
        self.numer = numer
        self.denom = denom //
            g
                Greatest common
                    divisor
    def __repr__(self):
        return 'Rational({0}, {1})'.format(self.numer, self.denom)
def add_rational(x, y):
    nx, dx = x.numer, x.denom:
    ny, dy = y.numer, y.denom
    return Ra`tiona`l"(nx *-dy```ny * dx, dx * dy)
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g}=\mp@code{gcd(numer, denom);
        self.numer = numer
        self.denom = denom //
            g
                Greatest common
                        divisor
    def __repr__(self):
        \overline{return 'Rational({0}, {1})'.format(self.numer, self.denom)}
def add_rational(x,y): Now with property methods,
    ny, dy = y.numer, y.denom:< these might call functions
    return Ra`t ionäl"nx *"dy```ny * dx, dx * dy)
def mul_rational(x, y):
    return Rational(x.numer * y.numer, x.denom * y.denom)
```


Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g}=\mathrm{ gcd(numer, denom);
        self.numer = numer"%
        self.denom = denom //
            g
                Greatest common
                    g divisor
    def __repr__(self):
        \overline{return 'Rational({0}, {1})'.format(self.numer, self.denom)}
def add_rational(x, y):
    nx, dx =, x.numer, x.denom:
    ny, dy = y.numer, y.denom
    return Rătonät(nx * dy + ny * dx, dx * dy)
def mul_rational(x, y):
    return Rational(x.numer * y.numer, x.denom * y.denom)
Demo
```


Complex Numbers: the Rectangular Representation

Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
    return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI(\{0\}, \{1\})'.format(self.real,
                self.imag)
```


Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
        return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI({0}, {1})'.format(self.real,
                                    self.imag)
```

```
def add_complex(z1, z2):
```

def add_complex(z1, z2):
return ComplexRI(z1.real + z2.real,
return ComplexRI(z1.real + z2.real,
z1.imag + z2.imag)

```
    z1.imag + z2.imag)
```


Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
    return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI(\{0\}, \{1\})'.format(self.real,
                self.imag)
```

```
Might be either ComplexMA
    or ComplexRI instances
def add_complex ( \(\bar{Z} 1, \quad z 2 ;):\)
    return ComplexRİ(z1.real + z2.real,
    z1.imag + z2.imag)
```


Complex Numbers: the Rectangular Representation

```
class ComplexRI (object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
    return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI (\{0\}, \{1\})'.format(self.real,
                                self.imag)
```

```
Might be either ComplexMA
    or ComplexRI instances
def add complex (z1, zż):
```

 return Compiexēī́ciz.real + z2.real,
 z1.imag + z2.imag)
 Type Dispatching

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid
def iscomplex(z):
return type(z) in (ComplexRI, ComplexMA)

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
        return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
        return type(z) == Rational
```


Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
```

def isrational(z):
return type(z) == Rational
def add_complex_and_rational(z, r):
return ComplexRĪ(z.real + r.numer/r.denom, z.imag)

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
```

def isrational(z):
return type(z) == Rational

Converted to a
real number (float)
def add_complex_and_rational (z, r):
retūn ComplexR \bar{I} (z.real +r.numer/r.denomi, z.imag)

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    retürn ComplexR\overline{I}}\mathrm{ (z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
    """A
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    retürn ComplexR\overline{I}(z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    return ComplexRİ(z.real +r.numer/r.denom, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational.
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    return ComplexR\overline{I}(z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational.
    if iscomplex(z1) and iscomplex(z2):
    return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add_complex_and_rational(z2, z1)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    return ComplexRİ(z.real +r.numer/r.denom, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add_complex_and_rational(z2, z1)
    else:
        add_rational(z1, z2)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) == Rational
def add_complex_and_rational(z, r):
    return ComplexR\overline{I}(z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add_complex_and_rational(z2, z1)
    else:
        add_rational(z1, z2)

Tag-Based Type Dispatching

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type
```

def type_tag(x):
return type_tag.tags[type(x)]

```

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type
```

def type_tag(x):
return type_tag.tags[type(x)]
type_tag.tags = {ComplexRI: 'com',
ComplexMA: 'com',
Rational: 'rat'}

```

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type
```

def type_tag(x):
return type_tag.tags[type(x)]
type_tag.tags = {ComplexRI: Com': and ComplexMA should be
ComplexMA: 'com', treated uniformly

```

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type
```

def type_tag(x):
return type_tag.tags[type(x)]
type_tag.tags = {ComplexRI: com', and ComplexMA should be
ComplexMA: 'com', treated uniformly

```
```

def add(z1, z2):

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

 return add.implementations[types](z1, z2)
    ```

\section*{Tag-Based Type Dispatching}

Idea: Use dictionaries to dispatch on type
```

def type_tag(x):
return type_tag.tags[type(x)]
type_tag.tags = {omplexRI: 'com'
ComplexMA: 'com'
Rational:: rat'}

```

Declares that ComplexRI and ComplexMA should be treated uniformly
```

def add(z1, z2):

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
    return add.implementations[types](z1, z2)
add.implementations = {}
add.implementations[('com', 'com')] = add_complex
add.implementations[('rat', 'rat')] = add_rational
add.implementations[('com', 'rat')] = add_complex_and_rational
add.implementations[('rat', 'com')] = add_rational_and_complex
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
type_tag.tags = ComplexRI: 'com'
    ComplexMA: 'com'
                        Rational: rat'}
```

Declares that ComplexRI and ComplexMA should be treated uniformly

```
def add(z1, z2):
types = (type_tag(z1), type_tag(z2)) return add.implementations[types](z1, z2)
add.implementations \(=\{ \}\)
add.implementations[('com', 'com')] = add_complex
add.implementations[('rat', 'rat')] = add_rational
add.implementations[('com', 'rat')] = add_complex_and_rational
add.implementations[('rat', 'com')] = add rationaīand-compieex
```

lambda r, z: add_complex_and_rational(z, r)

Type Dispatching Analysis

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```


Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

$$
m \cdot(m-1) \cdot n
$$

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

$$
\begin{gathered}
m \cdot(m-1) \cdot n \\
4 \cdot(4-1) \cdot 4=48
\end{gathered}
$$

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

| Arg 1 | Arg 2 | Add | Multiply |
| :---: | :---: | :---: | :---: |
| Complex | Complex | | |
| Rational | Rational | | |
| Complex | Rational | | |
| Rational | Complex | | |

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

| Arg 1 | Arg 2 | Add | Multiply |
| :---: | :---: | :---: | :---: |
| Complex | Complex | | |
| Rational | Rational | | |
| Complex | Rational | | |
| Rational | Complex | | |

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

| Arg 1 | Arg 2 | Add | Multiply |
| :---: | :---: | :---: | :---: |
| Complex | Complex | | |
| Rational | Rational | | |
| Complex | Rational | | |
| Rational | Complex | | |
| | | | |

Data-Directed Programming

Data-Directed Programming

There's nothing addition-specific about add_by_type

Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

```
def apply(operator_name, x, y):
    tags = (type_tag(x), type_tag(y))
    key = (operator_name, tags)
    return apply.implementations[key](x, y)
```


Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

```
def apply(operator_name, x, y):
    tags = (type_tag(x), type_tag(y))
    key = (operator_name, tags)
    return apply.implementations[key](x, y)
```

Demo

Coercion

Coercion

Idea: Some types can be converted into other types

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return Comp\̄exRI(x.numer/x.denom, 0)
```


Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return Comp\overline{lexRI(x.numer/x.denom, 0)}
>>> coercions = {('rat', 'com'): rational_to_complex}
```


Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return Comp\overline{lexRI(x.numer/x.denom, 0)}
>>> coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return Comp\overline{lexRI(x.numer/x.denom, 0)}
>>> coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

Applying Operators with Coercion

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
            ty, y = tx, coercions[(ty, tx)](y)
        else:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
            ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    key = (operator_name, tx)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
        return 'No coercion possible.'
    key = (operator_name, tx)
    return coerce_apply.implementations[key](x, y)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
        return 'No coercion possible.'
    key = (operator_name, tx)
    return coerce_apply.implementations[key](x, y)
```


Coercion Analysis

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme

| Arg 1 | Arg 2 | Add | Multiply |
| :---: | :---: | :---: | :---: |
| Complex | Complex | | |
| Rational | Rational | | |
| Complex | Rational | | |
| Rational | Complex | | |

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme

| Arg 1 | Arg 2 | Add | Multiply | |
| :---: | :---: | :---: | :---: | :---: |
| Complex | Complex | | | |
| Rational | Rational | | | |
| Complex | Rational | | | |
| Rational | Complex | | | |
| | | | | |
| From | To | Coerce | | |
| Complex | Rational | | | |
| Rational | Complex | | | |

Coercion Analysis

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme

| Arg 1 | Arg 2 | Add | Multiply |
| :---: | :---: | :---: | :---: | :---: |
| Complex | Complex | | |
| Rational | Rational | | |
| Complex | Rational | | |
| Rational | Complex | | |

| From | To | Coerce | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Complex | Rational | | Type | Add | Multiply |
| Rational | Complex | | | | |

