61A Lecture 18

Monday, October 10

Monday, October 10, 2011

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

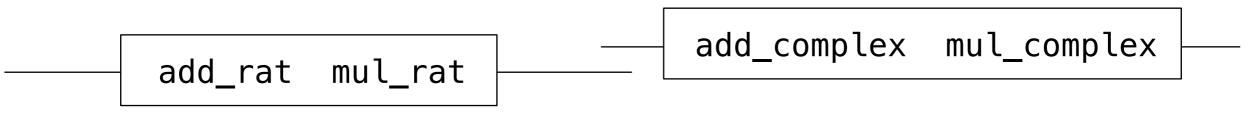
- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming
- Type coercion

What's different? Today's generic functions apply to multiple arguments that don't share a common interface

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

How do we add a complex number and a rational number together?



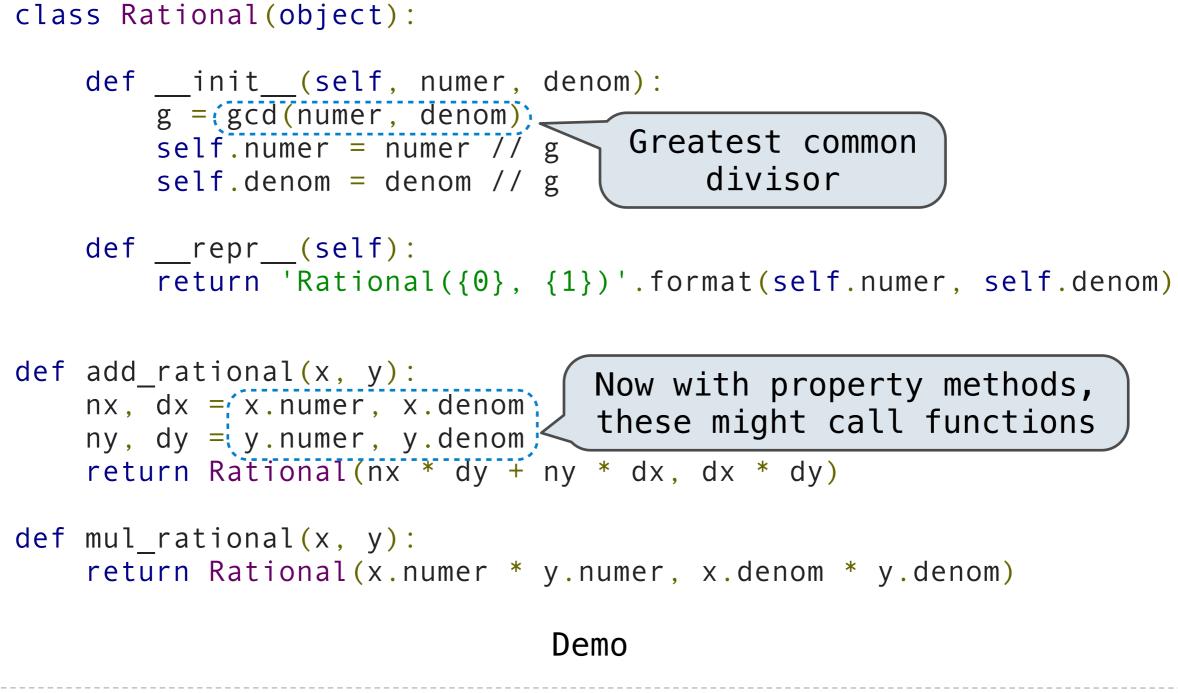
Rational numbers as numerators & denominators

Complex numbers as two-dimensional vectors

There are many different techniques for doing this!

Rational Numbers, Now with Classes

Rational numbers represented as a numerator and denominator



Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def init (self, real, imag):
        self.real = real
        self.imag = imag
   @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
   @property
    def angle(self):
        return atan2(self.imag, self.real)
    def repr (self):
        return 'ComplexRI({0}, {1})'.format(self.real,
                                             self.imag)
                          Might be either ComplexMA
                           or ComplexRI instances
def add complex (z1, z2)
     return ComplexRI(z1.real + z2.real,
                      z1.imag + z2.imag)
                                                          Demo
```

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
                                         Converted to a
    return type(z) == Rational
                                      real number (float)
def add complex and rational(z, r): \nabla
    return ComplexRI(z.real + r.numer/r.denom, z.imag)
def add by type dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add complex and rational(z2, z1)
    else:
        add_rational(z1, z2)
                                                          Demo
```

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

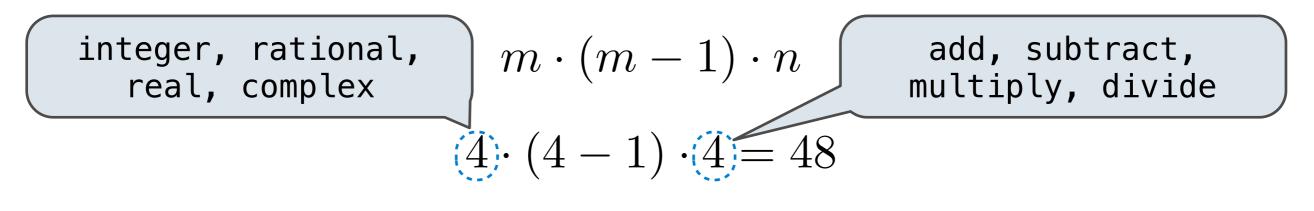
```
def type_tag(x):
    return type_tag.tags[type(x)]
                                      Declares that ComplexRI
type tag.tags = {ComplexRI: 'com';
                                      and ComplexMA should be
                 ComplexMA: 'com',
Rational: 'rat'}
                                         treated uniformly
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
add.implementations = {}
add.implementations[('com', 'com')] = add_complex
add.implementations[('rat', 'rat')] = add rational
add.implementations[('com', 'rat')] = add complex and rational
add.implementations[('rat', 'com')] = add rational and complex:
             lambda r, z: add_complex_and_rational(z, r)
```

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support *m* types and *n* operations?



Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Arg 1	Arg 2	Add	Multiply	
Complex	Complex			
Rational	Rational			
Complex	Rational			
Rational	Complex			_
	Message	Passing		

There's nothing addition-specific about add_by_type

Idea: One dispatch function for (operator, types) pairs

```
def apply(operator_name, x, y):
    tags = (type_tag(x), type_tag(y))
    key = (operator_name, tags)
    return apply.implementations[key](x, y)
```

Demo

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return ComplexRI(x.numer/x.denom, 0)
```

```
>>> coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

Applying Operators with Coercion

- 1. Attempt to coerce arguments into values of the same type
- 2. Apply type-specific (not cross-type) operations

```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
            ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    key = (operator name, tx)
    return coerce_apply.implementations[key](x, y)
                                                          Demo
```

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

	Arg 1		Arg 2	Add		Multiply	
	Complex		Complex				
	Rational		Rational				
	Complex		Rational				
	Rational		Complex				
_					\sum		
From	ו	То	Coerce		Туре	Add	Multip
Comple	ex	Rational			Complex		
Ration	al	Complex			Rational		