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Tree Recursion

Tree-shaped processes arise whenever executing the body of a 
function entails making more than one call to that function.
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http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7,  8,  9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):  ... ,   5,702,887

 ... ,          35

    def fib(n):

        if n == 1:

            return 0

        if n == 2:

            return 1

        return fib(n-2) + fib(n-1)
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    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

            return cache[n]

        return memoized

Demo

Keys are arguments that 
map to return values

Same behavior as f, 
if f is a pure function

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

Friday, October 14, 2011



Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

18,454,929

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

7

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0

The first 
Fibonacci number

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):

The first 
Fibonacci number

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):
             prev, curr = curr, prev + curr

The first 
Fibonacci number

Friday, October 14, 2011



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):
             prev, curr = curr, prev + curr
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Iteration vs Memoized Tree Recursion
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Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):
             prev, curr = curr, prev + curr
        return curr

    @memo
    def fib(n):
        if n == 1:
            return 0
        if n == 2:
            return 1
        return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first 
Fibonacci number
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Independent of 
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How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

B. Using at least one nickel; $0.06 with nickels & pennies
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    def count_change(a, kinds=(50, 25, 10, 5, 1)):

        <base cases>

        d = kinds[0]

        return count_change(a, kinds[1:]) + count_change(a-d, kinds)
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How many ways are there to change a dollar?

9

    def count_change(a, kinds=(50, 25, 10, 5, 1)):

        <base cases>

        d = kinds[0]

        return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds, 

where d is the denomination of the first kind of coin.
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Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Active environments: 
• The environment for the current expression being evaluated

• All environments for expressions that depend upon the value 
of the current expression

• All environments associated with values referenced by active 
environments
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make_adder: def make_adder(n):
    def adder(k):
        return k + n
    return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Associated with 
an environment

n: 1

make_adder

adder:

adder(k):

return k + n

    def adder(k):
        return k + n
    return adder

Therefore, all 
frames in this 
environment must 
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