
61A Lecture 20

Friday, October 14

Friday, October 14, 2011

Tree Recursion

2

Friday, October 14, 2011

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

Friday, October 14, 2011

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

Friday, October 14, 2011

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

 ... , 35

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

 return 1

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

 return 1

 return fib(n-2) + fib(n-1)

Friday, October 14, 2011

http://en.wikipedia.org/wiki/File:Fibonacci.jpg
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

A Tree-Recursive Process

3

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(4)

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)fib(4)

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Friday, October 14, 2011

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Demo

Friday, October 14, 2011

Repetition in Tree-Recursive Computation

4

Friday, October 14, 2011

Repetition in Tree-Recursive Computation

4

This process is highly repetitive; fib is called on the same
argument multiple times

Friday, October 14, 2011

Repetition in Tree-Recursive Computation

4

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

This process is highly repetitive; fib is called on the same
argument multiple times

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}
Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

Friday, October 14, 2011

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Demo

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

Friday, October 14, 2011

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

18,454,929

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

7

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0

The first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):

The first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr

The first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

The first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

The first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time SpaceThe first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

Time SpaceThe first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

Time SpaceThe first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

Time SpaceThe first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Independent of
problem size

Friday, October 14, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Scales with
problem size

Independent of
problem size

Friday, October 14, 2011

Counting Change

8

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

8

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

8

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

8

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

Friday, October 14, 2011

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

B. Using at least one nickel; $0.06 with nickels & pennies

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

 return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Friday, October 14, 2011

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

 return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Demo

Friday, October 14, 2011

Space Consumption

10

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

10

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

10

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

10

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Active environments:

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Active environments:
• The environment for the current expression being evaluated

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Active environments:
• The environment for the current expression being evaluated

• All environments for expressions that depend upon the value
of the current expression

Friday, October 14, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values & frames can be reclaimed.

10

Active environments:
• The environment for the current expression being evaluated

• All environments for expressions that depend upon the value
of the current expression

• All environments associated with values referenced by active
environments

Friday, October 14, 2011

Fibonacci Environment Diagram

11

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

Friday, October 14, 2011

Fibonacci Environment Diagram

11

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

n: 1
fib

Friday, October 14, 2011

Fibonacci Environment Diagram

11

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

n: 1
fib

0

Friday, October 14, 2011

Fibonacci Environment Diagram

12

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

0

n: 1
fib

Friday, October 14, 2011

Fibonacci Environment Diagram

12

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

0

n: 1
fib

fib(n-1)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

n: 2
fib

Friday, October 14, 2011

Fibonacci Memory Consumption

13

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Friday, October 14, 2011

Fibonacci Memory Consumption

13

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Friday, October 14, 2011

Fibonacci Memory Consumption

14

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Friday, October 14, 2011

Fibonacci Memory Consumption

14

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment

Friday, October 14, 2011

Fibonacci Memory Consumption

14

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment
Can be reclaimed

Friday, October 14, 2011

Fibonacci Memory Consumption

14

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

add1:

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Associated with
an environment

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

add1:

Friday, October 14, 2011

Active Environments for Returned Functions

15

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Associated with
an environment

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

Therefore, all
frames in this
environment must

be kept

add1:

Friday, October 14, 2011

