61A Lecture 21

Monday, October 17

Space Consumption

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.
Values and frames referenced by active environments are kept. Memory used for other values and frames can be reclaimed.

Active environments:

- The environment for the current expression being evaluated
- Environments for calls that depend upon the value of the current expression
- Environments associated with functions referenced by active environments

Fibonacci Environment Diagram

Fibonacci Environment Diagram

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Active Environments for Returned Functions

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
\boldsymbol{n} : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are constants k_{1} and k_{2} such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for sufficiently large values of \boldsymbol{n}.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.
@memo
def fib(n):
if n == 1:
return 0
if n == 2:
return 1
return fib(n-2) + fib(n-1)
$\Theta(n)$

```
```

```
def fib_iter(n):
```

```
def fib_iter(n):
    prev, curr = 1, 0
    prev, curr = 1, 0
    for _ in range(n-1):
    for _ in range(n-1):
        prev, curr = curr, prev + curr
        prev, curr = curr, prev + curr
    return curr
```

 return curr
    ```
```

@memo
def fib(n):
if $\mathrm{n}==1$:
return 0
if $n==2$:
return 1
return $f i b(n-2)+f i b(n-1)$

```
\(\Theta(n) \quad \Theta(n)\)

Time
Space

\section*{Comparing orders of growth}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta(n) \quad\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These functions scale well. Doubling the problem increments resources needed.
\(\Theta(1)\) Constant. The problem size doesn't matter.

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

```
        \(b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}\)
def square(x):
    return \(x^{*} x\)
def fast_exp(b, n):
    \(b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}\)
    if \(\mathrm{n}^{-}==0\) :
        return 1
    if \(\mathrm{n} \% 2=0\) :
        return square(fast_exp(b, n//2))
        else:
        return b * fast_exp(b, n-1)

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.

Time
Space
```

$\Theta(n) \quad \Theta(n)$
def square(x): return $x^{*} x$
def fast_exp(b, n):
if $\mathrm{n}^{-=} 0$:
return 1
if $n \% 2=0$:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)
def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)
return x*x
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)

```
```

