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Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values and frames can be reclaimed.
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Active environments: 
• The environment for the current expression being evaluated

• Environments for calls that depend upon the value of the 
current expression

• Environments associated with functions referenced by active 
environments
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Fibonacci Environment Diagram
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fib(3)

if n == 1:
    return 0
if n == 2:
    return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
    return 0
if n == 2:
    return 1
return fib(n-2) + fib(n-1)

n: 1
fib

0
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Fibonacci Environment Diagram
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fib(3)

if n == 1:
    return 0
if n == 2:
    return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
    return 0
if n == 2:
    return 1
return fib(n-2) + fib(n-1)

0

n: 1
fib

fib(n-1)

if n == 1:
    return 0
if n == 2:
    return 1
return fib(n-2) + fib(n-1)

n: 2
fib
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Fibonacci Memory Consumption
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fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have 
reached this step
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Fibonacci Memory Consumption
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fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have 
reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created
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Active Environments for Returned Functions
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make_adder: def make_adder(n):
    def adder(k):
        return k + n
    return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Associated with 
an environment

n: 1

make_adder

adder:

adder(k):

return k + n

    def adder(k):
        return k + n
    return adder

Therefore, all 
frames in this 
environment must 

be kept 

add1:
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R(n) = Θ(f(n))

k1 · f(n) ≤ R(n) ≤ k2 · f(n)

Order of Growth

A method for bounding the resources used by a function as the 
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
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Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.
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    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):
             prev, curr = curr, prev + curr
        return curr

    @memo
    def fib(n):
        if n == 1:
            return 0
        if n == 2:
            return 1
        return fib(n-2) + fib(n-1)

Time Space

Θ(n)

Θ(n) Θ(n)

Θ(1)
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Θ(bn)

Θ(n)

Θ(log n)

Θ(1)

Comparing orders of growth
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Exponential growth!  Recursive fib takes 

Θ(φn) φ =
1 +

√
5

2
≈ 1.61828steps, where 

Incrementing the problem scales R(n) by a factor.

Linear growth.  Resources scale with the problem.

Logarithmic growth. These functions scale well. 

Doubling the problem increments resources needed.

Constant. The problem size doesn't matter.
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bn =

�
1 if n = 0

b · bn−1 otherwise

bn =






1 if n = 0

(b
1
2n)2 if n is even

b · bn−1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.
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    def exp(b, n):
        if n == 0:
            return 1
        return b * exp(b, n-1)

    def square(x):
        return x*x

    def fast_exp(b, n):
        if n == 0:
            return 1
        if n % 2 == 0:
            return square(fast_exp(b, n//2))
        else:
            return b * fast_exp(b, n-1)
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Exponentiation

Goal: one more multiplication lets us double the problem size.
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    def exp(b, n):
        if n == 0:
            return 1
        return b * exp(b, n-1)

    def square(x):
        return x*x

    def fast_exp(b, n):
        if n == 0:
            return 1
        if n % 2 == 0:
            return square(fast_exp(b, n//2))
        else:
            return b * fast_exp(b, n-1)

Time Space

Θ(n) Θ(n)

Θ(log n) Θ(log n)
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