
61A Lecture 21

Monday, October 17

Monday, October 17, 2011

Space Consumption

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames referenced by active environments are kept.

Memory used for other values and frames can be reclaimed.

2

Active environments:
• The environment for the current expression being evaluated

• Environments for calls that depend upon the value of the
current expression

• Environments associated with functions referenced by active
environments

Monday, October 17, 2011

Fibonacci Environment Diagram

3

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

n: 1
fib

0

Monday, October 17, 2011

Fibonacci Environment Diagram

4

fib(3)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

fib:
fib(n):

...

n: 3
fib

fib(n-2)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

0

n: 1
fib

fib(n-1)

if n == 1:
 return 0
if n == 2:
 return 1
return fib(n-2) + fib(n-1)

n: 2
fib

Monday, October 17, 2011

Fibonacci Memory Consumption

5

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Monday, October 17, 2011

Fibonacci Memory Consumption

6

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created

Monday, October 17, 2011

Active Environments for Returned Functions

7

make_adder: def make_adder(n):
 def adder(k):
 return k + n
 return adder
add1 = make_adder(1)

make_adder(n):
...

make_adder(1)

Associated with
an environment

n: 1

make_adder

adder:

adder(k):

return k + n

 def adder(k):
 return k + n
 return adder

Therefore, all
frames in this
environment must

be kept

add1:

Monday, October 17, 2011

R(n) = Θ(f(n))

k1 · f(n) ≤ R(n) ≤ k2 · f(n)

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.

Monday, October 17, 2011

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

Θ(n)

Θ(n) Θ(n)

Θ(1)

Monday, October 17, 2011

Θ(bn)

Θ(n)

Θ(log n)

Θ(1)

Comparing orders of growth

10

Exponential growth! Recursive fib takes

Θ(φn) φ =
1 +

√
5

2
≈ 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These functions scale well.

Doubling the problem increments resources needed.

Constant. The problem size doesn't matter.

Monday, October 17, 2011

bn =

�
1 if n = 0

b · bn−1 otherwise

bn =






1 if n = 0

(b
1
2n)2 if n is even

b · bn−1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Monday, October 17, 2011

Exponentiation

Goal: one more multiplication lets us double the problem size.

12

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

Θ(n) Θ(n)

Θ(log n) Θ(log n)

Monday, October 17, 2011

