61A Lecture 21

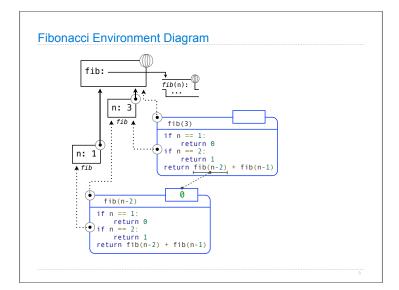
Monday, October 17

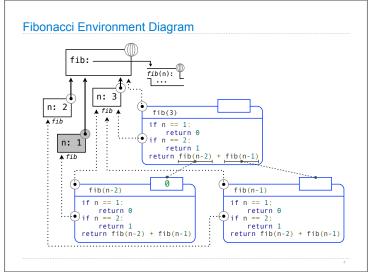
Space Consumption

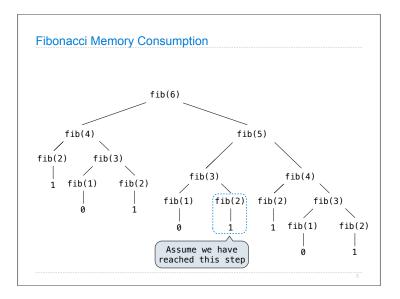
Which environment frames do we need to keep during evaluation? Each step of evaluation has a set of **active** environments. Values and frames referenced by active environments are kept. Memory used for other values and frames can be reclaimed.

Active environments:

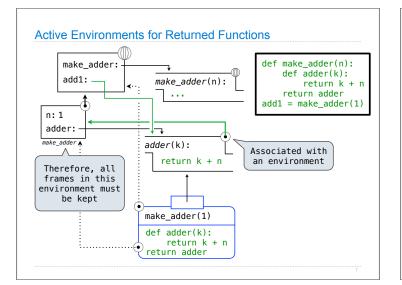
- $\ensuremath{^\circ}$ The environment for the current expression being evaluated
- $\ensuremath{{\circ}}$ Environments for calls that depend upon the value of the current expression
- $\ensuremath{^\circ}$ Environments associated with functions referenced by active environments











Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are constants k_1 and k_2 such that

$$k_1 \cdot f(n) \le R(n) \le k_2 \cdot f(n)$$

for sufficiently large values of \boldsymbol{n} .

terative and memoized implementations and	re not the	same.
	Time	Space
<pre>lef fib_iter(n): prev, curr = 1, 0 for _ in range(n-1): prev, curr = curr, prev + curr return curr</pre>	$\Theta(n)$	$\Theta(1)$
<pre>memo ef fib(n): if n == 1: return 0 if n == 2: return 1 return fib(n-2) + fib(n-1)</pre>	$\Theta(n)$	$\Theta(n)$

Comparing	orders of growth
$\Theta(b^n)$	Exponential growth! Recursive fib takes
	$\Theta(\phi^n)$ steps, where $\ \phi=\frac{1+\sqrt{5}}{2}\approx 1.61828$
	Incrementing the problem scales $R(n)$ by a factor.
$\Theta(n)$	Linear growth. Resources scale with the problem.
$\Theta(\log n)$	Logarithmic growth. These functions scale well.
	Doubling the problem increments resources needed.
$\Theta(1)$	Constant. The problem size doesn't matter.
	10

oal	: one more multiplication let	s us do	uble the	problem size.
def	<pre>exp(b, n): if n == 0: return 1 return b * exp(b, n-1)</pre>	$b^n =$	$\begin{cases} 1\\ b\cdot b^{n-1} \end{cases}$	if $n = 0$ otherwise
def	<pre>square(x): return x*x</pre>	$b^n =$	$\begin{cases} 1\\ (b^{\frac{1}{2}n})^2 \end{cases}$	if $n = 0$ if n is even if n is odd
def	<pre>fast_exp(b, n): if n == 0: return 1 if n % 2 == 0: return square(fast_exp(b, else: return b * fast_exp(b, n-</pre>	n//2))	$b \cdot b^{n-1}$	if n is odd

could one more materpercation teto as as	uble the pr	oblem size.
	Time	Space
<pre>def exp(b, n): if n == 0: return 1 return b * exp(b, n-1)</pre>	$\Theta(n)$	$\Theta(n)$
def square(x): return x*x		
<pre>def fast_exp(b, n): if n == 0: return 1 if n % 2 == 0: return square(fast_exp(b, n//2)) else: return b * fast_exp(b, n-1)</pre>	$\Theta(\log n)$	$\Theta(\log n)$