
61A Lecture 23

Friday, October 21

Friday, October 21, 2011

Sets

2

Friday, October 21, 2011

Sets

One more built-in Python container type

2

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

2

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

2

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}

Friday, October 21, 2011

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

Friday, October 21, 2011

Implementing Sets

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

3

Union

1

3
4

2

3
5

1

3
4

2

5

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2
• Intersection: Return a set with any elements in set1 and set2

3

Union

1

3
4

2

3
5

1

3
4

2

5

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2
• Intersection: Return a set with any elements in set1 and set2

3

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2
• Intersection: Return a set with any elements in set1 and set2
• Adjunction: Return a set with all elements in s and a value v

3

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Friday, October 21, 2011

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2
• Intersection: Return a set with any elements in set1 and set2
• Adjunction: Return a set with all elements in s and a value v

3

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

 if empty(s):

 return False

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

 if empty(s):

 return False

 elif s.first == v:

 return True

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

 if empty(s):

 return False

 elif s.first == v:

 return True

 return set_contains(s.rest, v)

Friday, October 21, 2011

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

 if empty(s):

 return False

 elif s.first == v:

 return True

 return set_contains(s.rest, v)

Demo

Friday, October 21, 2011

Review: Order of Growth

5

Friday, October 21, 2011

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

Friday, October 21, 2011

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

Friday, October 21, 2011

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

Friday, October 21, 2011

R(n) = Θ(n)

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

Friday, October 21, 2011

R(n) = Θ(n)

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

which means that there are constants k1 and k2 such that

Friday, October 21, 2011

R(n) = Θ(n)

k1 · n ≤ R(n) ≤ k2 · n

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

which means that there are constants k1 and k2 such that

Friday, October 21, 2011

R(n) = Θ(n)

k1 · n ≤ R(n) ≤ k2 · n

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

which means that there are constants k1 and k2 such that

for sufficiently large values of n.

Friday, October 21, 2011

R(n) = Θ(n)

k1 · n ≤ R(n) ≤ k2 · n

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

which means that there are constants k1 and k2 such that

for sufficiently large values of n.

Demo

Friday, October 21, 2011

Sets as Unordered Sequences

6

Friday, October 21, 2011

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

Friday, October 21, 2011

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

Friday, October 21, 2011

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

Friday, October 21, 2011

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

Friday, October 21, 2011

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

Time order of growth

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

Time order of growth

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

Time order of growth

The size of
the set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

Time order of growth

The size of
the set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

Time order of growth

The size of
the set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

Time order of growth

The size of
the set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

Θ(n2)

Time order of growth

The size of
the set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

 f = lambda v: not set_contains(set2, v)

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

 f = lambda v: not set_contains(set2, v)

 set1_not_set2 = filter_rlist(set1, f)

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Θ(n)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

 f = lambda v: not set_contains(set2, v)

 set1_not_set2 = filter_rlist(set1, f)

 return extend_rlist(set1_not_set2, set2)

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Θ(n)

Θ(n2)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

 f = lambda v: not set_contains(set2, v)

 set1_not_set2 = filter_rlist(set1, f)

 return extend_rlist(set1_not_set2, set2)

Θ(n2)

Time order of growth

The size of
the set

The size of
the larger set

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

 elif s.first == v:

 return True

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

 elif s.first == v:

 return True

 return set_contains2(s.rest, v)

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

 elif s.first == v:

 return True

 return set_contains2(s.rest, v)

Order of growth?

Friday, October 21, 2011

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

 elif s.first == v:

 return True

 return set_contains2(s.rest, v)

Θ(n)Order of growth?

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

8

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

 return intersect_set2(set1, set2.rest)

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

 return intersect_set2(set1, set2.rest)

Demo

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

 return intersect_set2(set1, set2.rest)

Demo Order of growth?

Friday, October 21, 2011

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

 return intersect_set2(set1, set2.rest)

Demo Θ(n)Order of growth?

Friday, October 21, 2011

Tree Sets

9

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

9

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

9

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

9

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

9

7

3

1 5

9

11

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

9

7

3

1 5

9

11

7

3

1

5 9

11

Friday, October 21, 2011

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

9

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

Friday, October 21, 2011

Membership in Tree Sets

10

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

10

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

10

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

 def set_contains3(s, v):

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

 def set_contains3(s, v):

 if s is None:

 return False

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

 elif s.entry > v:

 return set_contains3(s.left, v)

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

5

3

1 7

9

11

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

 elif s.entry > v:

 return set_contains3(s.left, v)

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

5

3

1 7

9

11

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

 elif s.entry > v:

 return set_contains3(s.left, v)

9

Friday, October 21, 2011

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

5

3

1 7

9

11

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

 elif s.entry > v:

 return set_contains3(s.left, v)

9

If 9 is in the
set, it is in
this branch

Friday, October 21, 2011

Adjoining to a Tree Set

11

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

Right!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

Right!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

Right!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

Right! Left!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left!

None None

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

8

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8

Friday, October 21, 2011

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8
Demo

Friday, October 21, 2011

What Did I Leave Out?

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!

12

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!

12

No lecture on Monday

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!

12

No lecture on Monday

Midterm 2 on Monday, 7pm-9pm

Friday, October 21, 2011

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!

12

No lecture on Monday

Midterm 2 on Monday, 7pm-9pm

Good luck!

Friday, October 21, 2011

