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>>> s
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>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
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Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries
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>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
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Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
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Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that 
contains no duplicate items

4

    def empty(s):

        return s is Rlist.empty

    def set_contains(s, v):

        if empty(s):

            return False
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Proposal 1: A set is represented by a recursive list that 
contains no duplicate items

4

    def empty(s):

        return s is Rlist.empty

    def set_contains(s, v):

        if empty(s):

            return False

        elif s.first == v:

            return True
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    def empty(s):

        return s is Rlist.empty

    def set_contains(s, v):

        if empty(s):

            return False

        elif s.first == v:

            return True
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Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that 
contains no duplicate items

4

    def empty(s):

        return s is Rlist.empty

    def set_contains(s, v):

        if empty(s):

            return False

        elif s.first == v:

            return True

        return set_contains(s.rest, v)
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        if set_contains(s, v):

            return s
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    def adjoin_set(s, v):

        if set_contains(s, v):

            return s

        return Rlist(v, s)

    def intersect_set(set1, set2):
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    def adjoin_set(s, v):

        if set_contains(s, v):

            return s

        return Rlist(v, s)

    def intersect_set(set1, set2):

        f = lambda v: set_contains(set2, v)

        return filter_rlist(set1, f)
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    def adjoin_set(s, v):

        if set_contains(s, v):

            return s

        return Rlist(v, s)

    def intersect_set(set1, set2):

        f = lambda v: set_contains(set2, v)

        return filter_rlist(set1, f)

    def union_set(set1, set2):
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    def adjoin_set(s, v):

        if set_contains(s, v):

            return s

        return Rlist(v, s)

    def intersect_set(set1, set2):

        f = lambda v: set_contains(set2, v)

        return filter_rlist(set1, f)

    def union_set(set1, set2):

        f = lambda v: not set_contains(set2, v)
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6

    def adjoin_set(s, v):

        if set_contains(s, v):

            return s

        return Rlist(v, s)

    def intersect_set(set1, set2):

        f = lambda v: set_contains(set2, v)

        return filter_rlist(set1, f)

    def union_set(set1, set2):

        f = lambda v: not set_contains(set2, v)
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Θ(n2)
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The size of 
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            return True
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    def set_contains2(s, v):
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Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half
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    def set_contains3(s, v):

        if s is None:

            return False
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Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

    def set_contains3(s, v):

        if s is None:

            return False

        elif s.entry == v:

            return True
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Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half
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    def set_contains3(s, v):

        if s is None:

            return False

        elif s.entry == v:

            return True

        elif s.entry < v:

            return set_contains3(s.right, v)
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Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

    def set_contains3(s, v):

        if s is None:

            return False

        elif s.entry == v:

            return True

        elif s.entry < v:

            return set_contains3(s.right, v)

        elif s.entry > v:

            return set_contains3(s.left, v)
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    def set_contains3(s, v):

        if s is None:

            return False

        elif s.entry == v:

            return True
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            return set_contains3(s.left, v)
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Sets as ordered sequences:
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Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!
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Midterm 2 on Monday, 7pm-9pm

Good luck!
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