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def pruned(t1, t2):
    if t2 is None:
        return True
    if t1 is None:
        return False
    return pruned(t1.left, t2.left) and pruned(t1.right, t2.right)

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None
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Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer
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Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from 
h to f without waiting for g to return.

However, exception handling tends to be slow.

Mastering exceptions:
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Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled 
in "production" systems. "O" stands for optimized.

python3 -O

Whether assertions are enabled is governed by a bool __debug__

Demo
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Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are 
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation
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Try statements handle exceptions
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try:
    <try suite>
except <exception class> as <name>:
    <except suite>
...

Execution rule:

The <try suite> is executed first;

If, during the course of executing the <try suite>, 
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception
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>>> try:

        x = 1/0

    except ZeroDivisionError as e:

        print('handling a', type(e))

        x = 0
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def invert(x):
    result = 1/x  # Raises a ZeroDivisionError if x is 0
    print('Never printed if x is 0')
    return result

def invert_safe(x):
    try:
        return invert(x)
    except ZeroDivisionError as e:
        return str(e)
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Iterative improvement is a higher-order function

• The update argument provides better guesses
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• Used to implement Newton's method (find_root)
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newton.py                                                                     Page 2

    3.0
    """
    def update(guess):
        return cube_root_update(guess, x)
    def done(guess):
        return guess * guess * guess == x
    return iter_improve(update, done)

def square_root_newton(x):
    """Return the square root of x.
    
    >>> square_root_newton(9)
    3.0
    """
    return find_root(lambda y: y * y  x) 

def cube_root_newton(x):
    """Return the cube root of x.
    
    >>> cube_root_newton(27)
    3.0
    """
    return find_root(lambda y: y * y * y  x) 

def approx_derivative(f, x, delta=1e 5):
    """Return an approximation to the derivative of f at x."""
    df = f(x + delta)  f(x)
    return df/delta

def newton_update(f):
    """Return an update function for f using Newton's method."""
    def update(x):
        return x  f(x) / approx_derivative(f, x)
    return update

def find_root(f, guess=1):
    """Return a guess of a zero of the function f, near guess.
    
    >>> from math import sin
    >>> find_root(lambda y: sin(y), 3)
    3.141592653589793
    """
    return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
    interact()
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Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)
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Exception Chaining

The except suite of a try statement can raise another 
exception that adds additional information.
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