
61A Lecture 25

Friday, October 28

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

Right!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

Right!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

Right!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

Right! Left!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left!

None None

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

8

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

Friday, October 28, 2011

From Last Time: Adjoining to a Tree Set

2

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8

Friday, October 28, 2011

From the Exam: Pruned Trees

3

a b c d

Friday, October 28, 2011

From the Exam: Pruned Trees

3

a b c d

True True False

(a,b) (a,c) (a,d)

pruned

Friday, October 28, 2011

From the Exam: Pruned Trees

4

a c

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

a c

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

a c

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

a c

implies

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

what about c.left?

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

what about c.left?

None

None

None None

Friday, October 28, 2011

From the Exam: Pruned Trees

4

pruned(a, c)

pruned(a.right, c.right)

a c

implies

what about c.left?

None

None

None None

Friday, October 28, 2011

From the Exam: Pruned Trees

5

a

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

a

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

a d

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

a

would imply

d

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

None

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

None

None

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

None

None

None

Friday, October 28, 2011

From the Exam: Pruned Trees

5

pruned(a, d)

pruned(a.left, d.left)

a

would imply

d

None

None

None Not None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

a b c d

Friday, October 28, 2011

From the Exam: Pruned Trees

6

a b c d

Recursive call: both branches are pruned as well

Friday, October 28, 2011

From the Exam: Pruned Trees

6

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):
 if t2 is None:

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):
 if t2 is None:
 return True

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):
 if t2 is None:
 return True
 if t1 is None:

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):
 if t2 is None:
 return True
 if t1 is None:
 return False

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

From the Exam: Pruned Trees

6

def pruned(t1, t2):
 if t2 is None:
 return True
 if t1 is None:
 return False
 return pruned(t1.left, t2.left) and pruned(t1.right, t2.right)

a b c d

Recursive call: both branches are pruned as well

Base cases: one (or more) of the trees is None

Friday, October 28, 2011

Today's Topic: Handling Errors

7

Friday, October 28, 2011

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

7

Friday, October 28, 2011

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

7

Friday, October 28, 2011

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

• Some resource (such as a file) does not exist

7

Friday, October 28, 2011

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

• Some resource (such as a file) does not exist

• Network connections are lost

7

Friday, October 28, 2011

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

• Some resource (such as a file) does not exist

• Network connections are lost

7

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

Friday, October 28, 2011

Different Error Handling Policies

8

Friday, October 28, 2011

Different Error Handling Policies

8

Friday, October 28, 2011

Different Error Handling Policies

8

Versus

Friday, October 28, 2011

Different Error Handling Policies

8

Versus

Friday, October 28, 2011

Exceptions

9

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

9

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

9

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

9

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Mastering exceptions:

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Exceptions are objects! They have classes with constructors.

Mastering exceptions:

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

Mastering exceptions:

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from
h to f without waiting for g to return.

Mastering exceptions:

Friday, October 28, 2011

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

9

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from
h to f without waiting for g to return.

However, exception handling tends to be slow.

Mastering exceptions:

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled
in "production" systems. "O" stands for optimized.

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled
in "production" systems. "O" stands for optimized.

python3 -O

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled
in "production" systems. "O" stands for optimized.

python3 -O

Whether assertions are enabled is governed by a bool __debug__

Friday, October 28, 2011

Assert Statements

Assert statements raise an exception of type AssertionError

10

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled
in "production" systems. "O" stands for optimized.

python3 -O

Whether assertions are enabled is governed by a bool __debug__

Demo

Friday, October 28, 2011

Raise Statements

11

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

Friday, October 28, 2011

Raise Statements

Exceptions are raised with a raise statement.

11

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Friday, October 28, 2011

Try Statements

12

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first;

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first;

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first;

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

Friday, October 28, 2011

Try Statements

Try statements handle exceptions

12

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first;

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

Friday, October 28, 2011

Handling Exceptions

13

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

Multiple try statements: Control jumps to the except
suite of the most recent try statement that handles
that type of exception.

Friday, October 28, 2011

Handling Exceptions

Exception handling can prevent a program from terminating

13

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

Multiple try statements: Control jumps to the except
suite of the most recent try statement that handles
that type of exception.

Demo

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

 >>> invert_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

 >>> invert_safe(1/0)

 >>> try:
 invert_safe(0)
 except ZeroDivisionError as e:
 print('Handled!')

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

Friday, October 28, 2011

WWPD: What Would Python Do?

How will the Python interpreter respond?

14

 >>> invert_safe(1/0)

 >>> try:
 invert_safe(0)
 except ZeroDivisionError as e:
 print('Handled!')

 >>> inverrrrt_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

Friday, October 28, 2011

Example: Safe Iterative Improvement

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

Friday, October 28, 2011

Example: Safe Iterative Improvement

Iterative improvement is a higher-order function

• The update argument provides better guesses
• The done argument indicates completion
• Used to implement Newton's method (find_root)

15

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

newton.py Page 2

 3.0
 """
 def update(guess):
 return cube_root_update(guess, x)
 def done(guess):
 return guess * guess * guess == x
 return iter_improve(update, done)

def square_root_newton(x):
 """Return the square root of x.

 >>> square_root_newton(9)
 3.0
 """
 return find_root(lambda y: y * y x)

def cube_root_newton(x):
 """Return the cube root of x.

 >>> cube_root_newton(27)
 3.0
 """
 return find_root(lambda y: y * y * y x)

def approx_derivative(f, x, delta=1e 5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) f(x)
 return df/delta

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x f(x) / approx_derivative(f, x)
 return update

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

@main
def run():
 interact()

Friday, October 28, 2011

Exception Chaining

The except suite of a try statement can raise another
exception that adds additional information.

16

Bonus
Material

Demo

Friday, October 28, 2011

