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Programming Languages

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages
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Machine 
language C Python
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λf.(λx.f(x x))(λx.f(x x))

f(x) = x2 − 2x+ 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical 
languages (such as programming languages)
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In computer science, languages can be implemented:

• An interpreter for a programming language is a function that, 
when applied to an expression of the language, performs the 
actions required to evaluate that expression

• The semantics and syntax of a language must be specified 
precisely in order to allow for an interpreter
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The Calculator Language

Prefix notation expression language for basic arithmetic

Python-like syntax, with more flexible built-in functions
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calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))

16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Demo
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Syntax and Semantics of Calculator

Expression types:
• A call expression is an operator name followed by a comma-
separated list of operand expressions, in parentheses

• A primitive expression is a number

Operators:
• The {add,+} operator returns the sum of its arguments

• The {sub,-} operator returns either 
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The {mul,*} operator returns the product of its arguments

• The {div,/} operator returns the real-valued quotient of a 
dividend and divisor (i.e., a numerator and denominator)

5
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Expression Trees

A basic interpreter has two parts: a parser and an evaluator
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string parser expression 
tree Evaluator value

'add(2, 2)' Exp('add', [2, 2]) 4

An expression tree is a (hierarchical) data structure 
that represents a (nested) expression

    class Exp(object):
        """A call expression in Calculator."""
        def __init__(self, operator, operands):
            self.operator = operator
            self.operands = operands
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Creating Expression Trees Directly

We can construct expression trees in Python directly

The __str__ method of Exp returns a Calculator call expression
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>>> Exp('add', [1, 2])

Exp('add', [1, 2])

>>> str(Exp('add', [1, 2]))

'add(1, 2)'

>>> Exp('add', [1, Exp('mul', [2, 3, 4])])

Exp('add', [1, Exp('mul', [2, 3, 4])])

>>> str(Exp('add', [1, Exp('mul', [2, 3, 4])]))

'add(1, mul(2, 3, 4))'
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Evaluation

Evaluation discovers the form of an expression and then 
executes a corresponding evaluation rule.

• Primitive expressions (literals) are evaluated directly

• Call expressions are evaluated recursively
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list
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    def calc_eval(exp):
        """Evaluate a Calculator expression."""
        if type(exp) in (int, float):
            return exp
        elif type(exp) == Exp:
            arguments = list(map(calc_eval, exp.operands))
            return calc_apply(exp.operator, arguments)

Numbers are 
self-evaluating
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Applying Operators

Calculator has a fixed set of operators that we can enumerate
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    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        if operator in ('add', '+'):

            return sum(args)

        if operator in ('sub', '-'):

            if len(args) == 1:

                return -args[0]

            return sum(args[:1] + [-arg for arg in args[1:]])

        ...

Dispatch on 
operator name

Implement operator 
logic in Python

Demo
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Read-Eval-Print Loop

The user interface to many programming languages is an 
interactive loop, which

• Reads an expression from the user

• Parses the input to build an expression tree

• Evaluates the expression tree

• Prints the resulting value of the expression
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    def read_eval_print_loop():

        """Run a read-eval-print loop for calculator."""

        while True:

            expression_tree = calc_parse(input('calc> '))

            print(calc_eval(expression_tree))

Language-specific 
input prompt
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Raising Application Errors

The sub and div operators have restrictions on argument number

Raising exceptions in apply can identify such issues
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    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator in ('sub', '-'):

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...

        if operator in ('div', '/'):

            if len(args) != 2:

                raise TypeError(operator + ' requires exactly 2 arguments')

            ...

Monday, October 31, 2011



Handling Errors

The REPL handles errors by printing informative messages for 
the user, rather than crashing.
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A well-designed REPL should not crash on any input!

    def read_eval_print_loop():

        """Run a read-eval-print loop for calculator."""

        while True:

            try:

                expression_tree = calc_parse(input('calc> '))

                print(calc_eval(expression_tree))

            except (SyntaxError, TypeError, ZeroDivisionError) as err:

                print(type(err).__name__ + ':', err)

            except (KeyboardInterrupt, EOFError):  # <Control>-D, etc.

                print('Calculation completed.')

                return

Demo
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