
61A Lecture 26

Monday, October 31

Monday, October 31, 2011

Programming Languages

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language C Python

Monday, October 31, 2011

λf.(λx.f(x x))(λx.f(x x))

f(x) = x2 − 2x+ 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

• An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression

• The semantics and syntax of a language must be specified
precisely in order to allow for an interpreter

Monday, October 31, 2011

The Calculator Language

Prefix notation expression language for basic arithmetic

Python-like syntax, with more flexible built-in functions

4

calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))

16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Demo

Monday, October 31, 2011

Syntax and Semantics of Calculator

Expression types:
• A call expression is an operator name followed by a comma-
separated list of operand expressions, in parentheses

• A primitive expression is a number

Operators:
• The {add,+} operator returns the sum of its arguments

• The {sub,-} operator returns either
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The {mul,*} operator returns the product of its arguments

• The {div,/} operator returns the real-valued quotient of a
dividend and divisor (i.e., a numerator and denominator)

5

Monday, October 31, 2011

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

string parser expression
tree Evaluator value

'add(2, 2)' Exp('add', [2, 2]) 4

An expression tree is a (hierarchical) data structure
that represents a (nested) expression

 class Exp(object):
 """A call expression in Calculator."""
 def __init__(self, operator, operands):
 self.operator = operator
 self.operands = operands

Monday, October 31, 2011

Creating Expression Trees Directly

We can construct expression trees in Python directly

The __str__ method of Exp returns a Calculator call expression

7

>>> Exp('add', [1, 2])

Exp('add', [1, 2])

>>> str(Exp('add', [1, 2]))

'add(1, 2)'

>>> Exp('add', [1, Exp('mul', [2, 3, 4])])

Exp('add', [1, Exp('mul', [2, 3, 4])])

>>> str(Exp('add', [1, Exp('mul', [2, 3, 4])]))

'add(1, mul(2, 3, 4))'

Monday, October 31, 2011

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions (literals) are evaluated directly

• Call expressions are evaluated recursively
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list

8

 def calc_eval(exp):
 """Evaluate a Calculator expression."""
 if type(exp) in (int, float):
 return exp
 elif type(exp) == Exp:
 arguments = list(map(calc_eval, exp.operands))
 return calc_apply(exp.operator, arguments)

Numbers are
self-evaluating

Monday, October 31, 2011

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator in ('add', '+'):

 return sum(args)

 if operator in ('sub', '-'):

 if len(args) == 1:

 return -args[0]

 return sum(args[:1] + [-arg for arg in args[1:]])

 ...

Dispatch on
operator name

Implement operator
logic in Python

Demo

Monday, October 31, 2011

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user

• Parses the input to build an expression tree

• Evaluates the expression tree

• Prints the resulting value of the expression

10

 def read_eval_print_loop():

 """Run a read-eval-print loop for calculator."""

 while True:

 expression_tree = calc_parse(input('calc> '))

 print(calc_eval(expression_tree))

Language-specific
input prompt

Monday, October 31, 2011

Raising Application Errors

The sub and div operators have restrictions on argument number

Raising exceptions in apply can identify such issues

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator in ('sub', '-'):

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator in ('div', '/'):

 if len(args) != 2:

 raise TypeError(operator + ' requires exactly 2 arguments')

 ...

Monday, October 31, 2011

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

 def read_eval_print_loop():

 """Run a read-eval-print loop for calculator."""

 while True:

 try:

 expression_tree = calc_parse(input('calc> '))

 print(calc_eval(expression_tree))

 except (SyntaxError, TypeError, ZeroDivisionError) as err:

 print(type(err).__name__ + ':', err)

 except (KeyboardInterrupt, EOFError): # <Control>-D, etc.

 print('Calculation completed.')

 return

Demo

Monday, October 31, 2011

