
61A Lecture 26

Monday, October 31

Programming Languages

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language C Python

λf.(λx.f(x x))(λx.f(x x))

f(x) = x2 − 2x+ 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

• An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression

• The semantics and syntax of a language must be specified
precisely in order to allow for an interpreter

The Calculator Language

Prefix notation expression language for basic arithmetic

Python-like syntax, with more flexible built-in functions

4

calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))

16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Demo

Syntax and Semantics of Calculator

Expression types:
• A call expression is an operator name followed by a comma-
separated list of operand expressions, in parentheses

• A primitive expression is a number

Operators:
• The {add,+} operator returns the sum of its arguments

• The {sub,-} operator returns either
! the additive inverse of a single argument, or
! the sum of subsequent arguments subtracted from the first

• The {mul,*} operator returns the product of its arguments

• The {div,/} operator returns the real-valued quotient of a
dividend and divisor (i.e., a numerator and denominator)

5

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

string parser expression
tree Evaluator value

'add(2, 2)' Exp('add', [2, 2]) 4

An expression tree is a (hierarchical) data structure
that represents a (nested) expression

 class Exp(object):
 """A call expression in Calculator."""
 def __init__(self, operator, operands):
 self.operator = operator
 self.operands = operands

Creating Expression Trees Directly

We can construct expression trees in Python directly

The __str__ method of Exp returns a Calculator call expression

7

>>> Exp('add', [1, 2])

Exp('add', [1, 2])

>>> str(Exp('add', [1, 2]))

'add(1, 2)'

>>> Exp('add', [1, Exp('mul', [2, 3, 4])])

Exp('add', [1, Exp('mul', [2, 3, 4])])

>>> str(Exp('add', [1, Exp('mul', [2, 3, 4])]))

'add(1, mul(2, 3, 4))'

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions (literals) are evaluated directly

• Call expressions are evaluated recursively
! Evaluate each operand expression
! Collect their values as a list of arguments
! Apply the named operator to the argument list

8

 def calc_eval(exp):
 """Evaluate a Calculator expression."""
 if type(exp) in (int, float):
 return exp
 elif type(exp) == Exp:
 arguments = list(map(calc_eval, exp.operands))
 return calc_apply(exp.operator, arguments)

Numbers are
self-evaluating

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator in ('add', '+'):

 return sum(args)

 if operator in ('sub', '-'):

 if len(args) == 1:

 return -args[0]

 return sum(args[:1] + [-arg for arg in args[1:]])

 ...

Dispatch on
operator name

Implement operator
logic in Python

Demo

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user

• Parses the input to build an expression tree

• Evaluates the expression tree

• Prints the resulting value of the expression

10

 def read_eval_print_loop():

 """Run a read-eval-print loop for calculator."""

 while True:

 expression_tree = calc_parse(input('calc> '))

 print(calc_eval(expression_tree))

Language-specific
input prompt

Raising Application Errors

The sub and div operators have restrictions on argument number

Raising exceptions in apply can identify such issues

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator in ('sub', '-'):

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator in ('div', '/'):

 if len(args) != 2:

 raise TypeError(operator + ' requires exactly 2 arguments')

 ...

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

 def read_eval_print_loop():

 """Run a read-eval-print loop for calculator."""

 while True:

 try:

 expression_tree = calc_parse(input('calc> '))

 print(calc_eval(expression_tree))

 except (SyntaxError, TypeError, ZeroDivisionError) as err:

 print(type(err).__name__ + ':', err)

 except (KeyboardInterrupt, EOFError): # <Control>-D, etc.

 print('Calculation completed.')

 return

Demo

