
61A Lecture 29

Monday, November 7

Monday, November 7, 2011

Homework: Huffman Encoding Trees

2

Monday, November 7, 2011

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

Monday, November 7, 2011

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

Monday, November 7, 2011

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

B

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

B A

Monday, November 7, 2011

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

B A C

Monday, November 7, 2011

Logo Refresher

3

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

3

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

? run [print sum 1 2]

3

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

? to double :x

> output sum :x :x

> end

? run [print sum 1 2]

3

Monday, November 7, 2011

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

? to double :x

> output sum :x :x

> end

? print double 4

8

? run [print sum 1 2]

3

Monday, November 7, 2011

Logo Interpreter Architecture

4

Monday, November 7, 2011

Logo Interpreter Architecture

4

parser

Monday, November 7, 2011

Logo Interpreter Architecture

4

parser Evaluator

Monday, November 7, 2011

Logo Interpreter Architecture

4

parser Evaluator

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser Evaluator

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser Evaluator

'run [print sum 1 2]'

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]'

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A line of
Logo code

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A Logo
sentence

A line of
Logo code

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A Logo
sentence

Another Logo
sentence

A line of
Logo code

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A Logo
sentence

Another Logo
sentence

A line of
Logo code

Monday, November 7, 2011

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A Logo
sentence

Another Logo
sentence

A line of
Logo code

Monday, November 7, 2011

Tracking Positions in Lines

5

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

5

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2] show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2]

 >>> buf.pop()

 'show'

show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2]

 >>> buf.pop()

 'show'

 >>> print(buf)

 [show >> 2]

show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2]

 >>> buf.pop()

 'show'

 >>> print(buf)

 [show >> 2]

 >>> buf.pop()

 '2'

show 2

Monday, November 7, 2011

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2]

 >>> buf.pop()

 'show'

 >>> print(buf)

 [show >> 2]

 >>> buf.pop()

 '2'

show 2

Demo

Monday, November 7, 2011

Evaluating Lines

6

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

Evaluate a line eval_line

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

Calls
repeatedly

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

Calls
repeatedly

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

Calls
repeatedly

first call

second call

Argumentlogo_eval Effect

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

[>> print, 1, print, 2]

Calls
repeatedly

first call

second call

Argumentlogo_eval Effect

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

[>> print, 1, print, 2]

Calls
repeatedly

first call

second call

Argumentlogo_eval Effect
prints 1,
returns None

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

[>> print, 1, print, 2]

Calls
repeatedly

[print, 1 >> print, 2]

first call

second call

Argumentlogo_eval Effect
prints 1,
returns None

Monday, November 7, 2011

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

[>> print, 1, print, 2]

Calls
repeatedly

[print, 1 >> print, 2]

first call

second call

Argumentlogo_eval Effect
prints 1,
returns None

prints 2,
returns None

Monday, November 7, 2011

Logo Evaluation

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()The expression

form can be
inferred from

the first token

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()
 if isprimitive(token):

The expression
form can be

inferred from
the first token

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()
 if isprimitive(token):
 return token

The expression
form can be

inferred from
the first token

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()
 if isprimitive(token):
 return token
 elif isvariable(token):

The expression
form can be

inferred from
the first token

Monday, November 7, 2011

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()
 if isprimitive(token):
 return token
 elif isvariable(token):
 ...

The expression
form can be

inferred from
the first token

Monday, November 7, 2011

Evaluating Call Expressions

8

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure

collect_argsEvaluate n operands

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure

logo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

logo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

logo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

1. Collect 1 argument
via logo_eval
(collect_args)

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

[print, 2 >>]

1. Collect 1 argument
via logo_eval
(collect_args)

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

[print, 2 >>]

Popped by
logo_eval also

(recursive call)

1. Collect 1 argument
via logo_eval
(collect_args)

Monday, November 7, 2011

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

[print, 2 >>]

Popped by
logo_eval also

(recursive call)

1. Collect 1 argument
via logo_eval
(collect_args)

2. Apply print
procedure to the
argument '2'
(logo_apply)

Monday, November 7, 2011

Procedures

9

Monday, November 7, 2011

Procedures

9

 class Procedure():

Monday, November 7, 2011

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

Monday, November 7, 2011

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 self.name = name

 self.arg_count = arg_count

 self.body = body

 self.isprimitive = isprimitive

 self.needs_env = needs_env

 self.formal_params = formal_params

Monday, November 7, 2011

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 self.name = name

 self.arg_count = arg_count

 self.body = body

 self.isprimitive = isprimitive

 self.needs_env = needs_env

 self.formal_params = formal_params

 def logo_apply(proc, args):

 """Apply a Logo procedure to a list of arguments."""

Monday, November 7, 2011

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 self.name = name

 self.arg_count = arg_count

 self.body = body

 self.isprimitive = isprimitive

 self.needs_env = needs_env

 self.formal_params = formal_params

 def logo_apply(proc, args):

 """Apply a Logo procedure to a list of arguments."""

 if proc.isprimitive:

 return proc.body(*args)

Monday, November 7, 2011

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 self.name = name

 self.arg_count = arg_count

 self.body = body

 self.isprimitive = isprimitive

 self.needs_env = needs_env

 self.formal_params = formal_params

 def logo_apply(proc, args):

 """Apply a Logo procedure to a list of arguments."""

 if proc.isprimitive:

 return proc.body(*args)

 else:

 """Apply a user-defined procedure"""

Monday, November 7, 2011

Logo Interpreter

10

Apply

Eval

Monday, November 7, 2011

Logo Interpreter

10

Apply

Eval
eval_line

logo_eval

Monday, November 7, 2011

Logo Interpreter

10

Apply

Eval
eval_line

logo_eval

apply_procedure

collect_args

logo_apply

Monday, November 7, 2011

Eval/Apply in Lisp 1.5

11

Monday, November 7, 2011

Eval/Apply in Lisp 1.5

11

Monday, November 7, 2011

Eval/Apply in Logo

12

Apply

eval_line

apply_procedure

collect_args

logo_apply

Eval

logo_eval

Monday, November 7, 2011

Eval/Apply in Logo

12

Apply

eval_line

apply_procedure

collect_args

logo_apply

Eval

logo_eval

Call
expressions

Monday, November 7, 2011

Eval/Apply in Logo

12

Apply

eval_line

apply_procedure

collect_args

logo_apply

Eval

logo_eval

Call
expressions

Operand
expressions

Monday, November 7, 2011

Eval/Apply in Logo

12

Apply

eval_line

apply_procedure

collect_args

logo_apply

Eval

logo_eval

Call
expressions User-defined

procedures

Operand
expressions

Monday, November 7, 2011

