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Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

? to double :x

> output sum :x :x

> end

? print double 4

8

? run [print sum 1 2]

3
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    >>> buf = Buffer(['show', '2'])
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Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

    >>> buf = Buffer(['show', '2'])

    >>> buf.current

    'show'

    >>> print(buf)

    [  >> show, 2 ]

    >>> buf.pop()

    'show'

    >>> print(buf)

    [ show >> 2 ]

    >>> buf.pop()

    '2'

show 2

Demo
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    def logo_eval(line, env):
        """Evaluate the first expression in a line."""
        token = line.pop()
        if isprimitive(token):
            return token
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            ...
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apply_procedureApply a named procedure Return the output value
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9

    class Procedure():

        def __init__(self, name, arg_count, body, isprimitive=False,

                     needs_env=False, formal_params=None):

            self.name = name

            self.arg_count = arg_count

            self.body = body

            self.isprimitive = isprimitive

            self.needs_env = needs_env

            self.formal_params = formal_params

    def logo_apply(proc, args):

        """Apply a Logo procedure to a list of arguments."""

        if proc.isprimitive:

            return proc.body(*args)

        else:

            """Apply a user-defined procedure"""
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