
61A Lecture 29

Monday, November 7

Decoding a sequence of bits:

Homework: Huffman Encoding Trees

Efficient encoding of strings as ones and zeros (bits).

2

 A 0 C 1010 E 1100 G 1110

 B 100 D 1011 F 1101 H 1111

A

B

C D

E F G H

0 1

0 1

0 1

0 1

0 1

0 1 0 1

1 0 0 0 1 0 1 0

B A C

Logo Refresher

Data types: Words and sentences (immutable sequences)

Syntactic forms: Call expressions, literals, and to-statements

3

? print sum 10 difference 7 3

14

? to double :x

> output sum :x :x

> end

? print double 4

8

? run [print sum 1 2]

3

Logo Interpreter Architecture

4

string parser line Evaluator

'run [print sum 1 2]' ['run', ['print', 'sum', '1', '2']]

Logo words are represented as Python strings

Logo sentences are represented as Python lists

The Parser creates nested sentences, but does not build full
expression trees for nested call expressions

A Logo
sentence

Another Logo
sentence

A line of
Logo code

Tracking Positions in Lines

A line is used up as it is evaluated

A Buffer instance tracks how much of a line has been used up.

5

 >>> buf = Buffer(['show', '2'])

 >>> buf.current

 'show'

 >>> print(buf)

 [>> show, 2]

 >>> buf.pop()

 'show'

 >>> print(buf)

 [show >> 2]

 >>> buf.pop()

 '2'

show 2

Demo

Evaluating Lines

Evaluating a line of Logo involves evaluating each expression

6

? print 1 print 2

1

2

Evaluate a line eval_line

Evaluate the
next expression

logo_eval

[>> print, 1, print, 2]

Calls
repeatedly

[print, 1 >> print, 2]

first call

second call

Argumentlogo_eval Effect
prints 1,
returns None

prints 2,
returns None

Logo Evaluation

The logo_eval function dispatches on expression form:

• A primitive expression is a word that can be interpreted as
a number, True, or False. Primitives are self evaluating.

• A variable is looked up in the current environment.
• A procedure definition creates a new user-defined procedure.
• A quoted expression evaluates to the text of the quotation,
which is a string without the preceding quote. Sentences are
quoted and evaluate to themselves.

• A call expression is evaluated with apply_procedure.

7

 def logo_eval(line, env):
 """Evaluate the first expression in a line."""
 token = line.pop()
 if isprimitive(token):
 return token
 elif isvariable(token):
 ...

The expression
form can be

inferred from
the first token

Evaluating Call Expressions

8

apply_procedureApply a named procedure Return the output value

Return n arguments

Return the output valuelogo_applyApply a procedure to
a sequence of arguments

collect_argsEvaluate n operands

[print >> 2]

Popped by logo_eval

[print, 2 >>]

Popped by
logo_eval also

(recursive call)

1. Collect 1 argument
via logo_eval
(collect_args)

2. Apply print
procedure to the
argument '2'
(logo_apply)

Procedures

9

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 self.name = name

 self.arg_count = arg_count

 self.body = body

 self.isprimitive = isprimitive

 self.needs_env = needs_env

 self.formal_params = formal_params

 def logo_apply(proc, args):

 """Apply a Logo procedure to a list of arguments."""

 if proc.isprimitive:

 return proc.body(*args)

 else:

 """Apply a user-defined procedure"""

Logo Interpreter

10

Apply

Eval
eval_line

logo_eval

apply_procedure

collect_args

logo_apply

Eval/Apply in Lisp 1.5

11

Eval/Apply in Logo

12

Apply

eval_line

apply_procedure

collect_args

logo_apply

Eval

logo_eval

Call
expressions User-defined

procedures

Operand
expressions

