
61A Lecture 30

Wednesday, November 9

Wednesday, November 9, 2011

Functional Programming

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in
which sub-expressions are evaluated

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in
which sub-expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in
which sub-expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

• Referential transparency: The value of an expression does not
change when we substitute one of its subexpression with the
value of that subexpression.

2

Wednesday, November 9, 2011

Functional Programming

All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in
which sub-expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

• Referential transparency: The value of an expression does not
change when we substitute one of its subexpression with the
value of that subexpression.

The subset of Logo we have considered so far is functional
(except for print/show)

2

Wednesday, November 9, 2011

The Logo Assignment Procedure

3

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

3

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

3

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

3

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

The make procedure adds or changes variable bindings

3

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

The make procedure adds or changes variable bindings

3

? make "x 2

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

The make procedure adds or changes variable bindings

3

? make "x 2

Values bound to names are looked up using variable expressions

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

The make procedure adds or changes variable bindings

3

? make "x 2

Values bound to names are looked up using variable expressions

? print :x

2

Wednesday, November 9, 2011

The Logo Assignment Procedure

Logo binds variable names to values, as in Python

An environment stores name bindings in a sequence of frames

Each frame can have at most one value bound to a given name

The make procedure adds or changes variable bindings

3

? make "x 2

Values bound to names are looked up using variable expressions

? print :x

2

Demo

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

FRAMES

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

FRAMES PROCEDURES

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

x: 2

FRAMES PROCEDURES

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

x: 2

FRAMES PROCEDURES

sum :x :y
<built-in>

first :x
<built-in>

sum:

first:

make :n :v
<built-in>

make:
...

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

x: 2

FRAMES PROCEDURES

sum :x :y
<built-in>

first :x
<built-in>

sum:

first:

make :n :v
<built-in>

make:
...

? make "sum 3

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

x: 2

FRAMES PROCEDURES

sum :x :y
<built-in>

first :x
<built-in>

sum:

first:

make :n :v
<built-in>

make:
...

? make "sum 3

sum: 3

Wednesday, November 9, 2011

Namespaces for Variables and Procedures

4

x: 2

FRAMES PROCEDURES

sum :x :y
<built-in>

first :x
<built-in>

sum:

first:

make :n :v
<built-in>

make:
...

? make "sum 3

sum: 3

Demo

Wednesday, November 9, 2011

Assignment Rules

5

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

? make <name> <value>

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

• If the name is already bound, make re-binds that name
in the first frame in which the name is bound.

? make <name> <value>

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

• If the name is already bound, make re-binds that name
in the first frame in which the name is bound.

? make <name> <value>

Like non-local Python assignment

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

• If the name is already bound, make re-binds that name
in the first frame in which the name is bound.

• If the name is not bound, make binds the name in the
global frame.

? make <name> <value>

Like non-local Python assignment

Wednesday, November 9, 2011

Assignment Rules

Logo assignment has different rules from Python assignment:

5

• If the name is already bound, make re-binds that name
in the first frame in which the name is bound.

• If the name is not bound, make binds the name in the
global frame.

? make <name> <value>

Like non-local Python assignment

Like global Python assignment

Wednesday, November 9, 2011

Implementing the Make Procedure

6

Wednesday, November 9, 2011

Implementing the Make Procedure

The implementation of make requires access to the environment

6

Wednesday, November 9, 2011

Implementing the Make Procedure

The implementation of make requires access to the environment

6

 def logo_make(symbol, val, env):

 env.set_variable_value(symbol, val)

Wednesday, November 9, 2011

Implementing the Make Procedure

The implementation of make requires access to the environment

6

 def logo_make(symbol, val, env):

 env.set_variable_value(symbol, val)

class Environment(object):

Wednesday, November 9, 2011

Implementing the Make Procedure

The implementation of make requires access to the environment

6

 def logo_make(symbol, val, env):

 env.set_variable_value(symbol, val)

class Environment(object):

 def __init__(self, get_continuation_line=None):

 self.get_continuation_line = get_continuation_line

 self.procedures = load_primitives()

 self._frames = [dict()] # The first frame is global

Wednesday, November 9, 2011

Implementing the Make Procedure

The implementation of make requires access to the environment

6

 def logo_make(symbol, val, env):

 env.set_variable_value(symbol, val)

class Environment(object):

 def __init__(self, get_continuation_line=None):

 self.get_continuation_line = get_continuation_line

 self.procedures = load_primitives()

 self._frames = [dict()] # The first frame is global

 def set_variable_value(self, symbol, val):

 "*** YOUR CODE HERE ***"

Wednesday, November 9, 2011

Evaluating Definitions

7

Wednesday, November 9, 2011

Evaluating Definitions

A procedure definition (to statement) creates a new procedure
and binds its name in the table of known procedures

7

Wednesday, November 9, 2011

Evaluating Definitions

A procedure definition (to statement) creates a new procedure
and binds its name in the table of known procedures

7

? to factorial :n

> output ifelse :n = 1 [1] [:n * factorial :n - 1]

> end

Wednesday, November 9, 2011

Evaluating Definitions

A procedure definition (to statement) creates a new procedure
and binds its name in the table of known procedures

7

? to factorial :n

> output ifelse :n = 1 [1] [:n * factorial :n - 1]

> end

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 ...

Wednesday, November 9, 2011

Evaluating Definitions

A procedure definition (to statement) creates a new procedure
and binds its name in the table of known procedures

7

? to factorial :n

> output ifelse :n = 1 [1] [:n * factorial :n - 1]

> end

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 ...

Formal parameters: a list of variable names (without colons)

Wednesday, November 9, 2011

Evaluating Definitions

A procedure definition (to statement) creates a new procedure
and binds its name in the table of known procedures

7

? to factorial :n

> output ifelse :n = 1 [1] [:n * factorial :n - 1]

> end

 class Procedure():

 def __init__(self, name, arg_count, body, isprimitive=False,

 needs_env=False, formal_params=None):

 ...

Formal parameters: a list of variable names (without colons)

Body: a list of Logo sentences

Wednesday, November 9, 2011

Applying User-Defined Procedures

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

Output values require special handling:

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

Output values require special handling:

• Output returns a pair: ('OUTPUT', <value>)

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

Output values require special handling:

• Output returns a pair: ('OUTPUT', <value>)

• Stop returns a pair: ('OUTPUT', None)

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

Output values require special handling:

• Output returns a pair: ('OUTPUT', <value>)

• Stop returns a pair: ('OUTPUT', None)

logo_apply returns the <value> that is output by the body

8

Wednesday, November 9, 2011

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, extending the current environment

Evaluate each line of the body of the procedure in the
environment that starts with this new frame

If any top-level expression evaluates to a non-None value,
raise an error

Output values require special handling:

• Output returns a pair: ('OUTPUT', <value>)

• Stop returns a pair: ('OUTPUT', None)

logo_apply returns the <value> that is output by the body

8

Demo

Wednesday, November 9, 2011

Dynamic Scope and Environments

9

Wednesday, November 9, 2011

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

? to f :x
> make "z sum :x :y
> end

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

? to f :x
> make "z sum :x :y
> end

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

x: 3

g
y: 7

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

x: 3

g
y: 7

x: 6

f

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

x: 3

g
y: 7

x: 6

f

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Dynamic
scoping

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

z: 13 f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

x: 3

g
y: 7

x: 6

f

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Dynamic
scoping

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

z: 13 f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

x: 3

g
y: 7

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

z: 13 f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

z: 13 f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7
? print :z
13

Wednesday, November 9, 2011

PROCEDURESFRAMES

...

Dynamic Scope and Environments

A new frame for an applied procedure extends the current frame

9

z: 13 f :x
make "z sum :x :y

f:

g :x :y
f sum :x :x

g:

? to f :x
> make "z sum :x :y
> end
? to g :x :y
> f sum :x :x
> end
? g 3 7
? print :z
13

Demo

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

triple

x: 5

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

nonuple

y: 3

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

nonuple

y: 3

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

nonuple

y: 3 9

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

nonuple

y: 3 9

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3

nonuple

y: 3 9

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
x: 9

triple

nonuple

y: 3 9

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
x: 9

triple

nonuple

y: 3 9 27

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
x: 9

triple

nonuple

y: 3 9 27

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
x: 9

triple

nonuple

y: 3 9 27

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
27

x: 9

triple

nonuple

y: 3 9 27

Wednesday, November 9, 2011

FRAMES

Dynamic Scope and Environments

This example was presented in class on the chalkboard

10

y: 15

triple

x: 5

x: 3

triple

? to triple :x
> make "y product :x 3
> output :y
> end

? to nonuple :y
> output triple triple :y
> end

? print triple 5
15

? print nonuple 3
27

? print :y
15

x: 9

triple

nonuple

y: 3 9 27

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

11

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

factorial

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

factorial

=

- factorial

*

1

1 1

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

factorial

5 =

- factorial

*

1

1 1

Wednesday, November 9, 2011

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

factorial

5 120=

- factorial

*

1

1 1

Wednesday, November 9, 2011

Interpreters are General Computing Machine

12

Wednesday, November 9, 2011

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Wednesday, November 9, 2011

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Logo
Interpreter5 120

to factorial :n
output ifelse :n = 1 [1] [:n * factorial :n - 1]
end

Wednesday, November 9, 2011

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Logo
Interpreter5 120

to factorial :n
output ifelse :n = 1 [1] [:n * factorial :n - 1]
end

Our Logo interpreter is a universal machine

Wednesday, November 9, 2011

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Logo
Interpreter5 120

to factorial :n
output ifelse :n = 1 [1] [:n * factorial :n - 1]
end

Our Logo interpreter is a universal machine

A bridge between the data objects that are manipulated by our
programming language and the programming language itself

Wednesday, November 9, 2011

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Logo
Interpreter5 120

to factorial :n
output ifelse :n = 1 [1] [:n * factorial :n - 1]
end

Our Logo interpreter is a universal machine

A bridge between the data objects that are manipulated by our
programming language and the programming language itself

Internally, it is just a set of manipulation rules

Wednesday, November 9, 2011

Interpretation in Python

13

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

13

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

eval('2 + 2')

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

eval('2 + 2')

exec('def square(x): return x * x')

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

os.system('python <file>'): Directs the operating system to
invoke a new instance of the Python interpreter.

eval('2 + 2')

exec('def square(x): return x * x')

Wednesday, November 9, 2011

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

os.system('python <file>'): Directs the operating system to
invoke a new instance of the Python interpreter.

Demo

eval('2 + 2')

exec('def square(x): return x * x')

Wednesday, November 9, 2011

