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All functions are pure functions

No assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in 
which sub-expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

• Referential transparency: The value of an expression does not 
change when we substitute one of its subexpression with the 
value of that subexpression.

The subset of Logo we have considered so far is functional
(except for print/show)
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• If the name is already bound, make re-binds that name 
in the first frame in which the name is bound.

• If the name is not bound, make binds the name in the 
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    def logo_make(symbol, val, env):

        env.set_variable_value(symbol, val)

class Environment(object):

    def __init__(self, get_continuation_line=None):

        self.get_continuation_line = get_continuation_line

        self.procedures = load_primitives()

        self._frames = [dict()] # The first frame is global
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A procedure definition (to statement) creates a new procedure 
and binds its name in the table of known procedures

7

? to factorial :n

> output ifelse :n = 1 [1] [:n * factorial :n - 1]

> end

    class Procedure():

        def __init__(self, name, arg_count, body, isprimitive=False,

                     needs_env=False, formal_params=None):

            ...

Formal parameters: a list of variable names (without colons)

Body: a list of Logo sentences
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Logo 
Interpreter5 120

to factorial :n
output ifelse :n = 1 [1] [:n * factorial :n - 1]
end

Our Logo interpreter is a universal machine

A bridge between the data objects that are manipulated by our 
programming language and the programming language itself

Internally, it is just a set of manipulation rules
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eval: Evaluates an expression in the current environment and 
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing 
so may affect the environment.

13

os.system('python <file>'): Directs the operating system to 
invoke a new instance of the Python interpreter.

Demo

eval('2 + 2')

exec('def square(x): return x * x')
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