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Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

Microprocessor
Transistors are arranged into “integrated circuits” on single 
pieces of hardware. 

A microprocessor, or processor is a large integrated circuit 
of transistors where a computer’s instructions are executed. 
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Microprocessors

5

Intel 4000 
2300 Transistors

1971

National Semiconductor NS3008 
~10,00 Transistors

1981

1993

Intel Pentium
~3 million transistors

2000’s

AMD 64
~243 million transistors
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The solution: multiple microprocessors
Instead of trying to fit more transistors into a single 
processor, we are turning to multiple processors.
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How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?
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Next time: how to fix these problems

Locks, semaphores, conditions

21Tuesday, November 15, 2011


