
61A Lecture 32

November 16th, 2011

1Tuesday, November 15, 2011

Last time

2

2Tuesday, November 15, 2011

Last time

Distributed systems

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

 Message passing

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

 Message passing
• Protocols

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

 Message passing
• Protocols

System design principles

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

 Message passing
• Protocols

System design principles
 Modularity

2

2Tuesday, November 15, 2011

Last time

Distributed systems
 Architectures
• Client-server
• Peer-to-peer

 Message passing
• Protocols

System design principles
 Modularity
 Interfaces

2

2Tuesday, November 15, 2011

Today: Parallel Computation

3

3Tuesday, November 15, 2011

Today: Parallel Computation

Why is parallel computation important?

3

3Tuesday, November 15, 2011

Today: Parallel Computation

Why is parallel computation important?

What is parallel computation?

3

3Tuesday, November 15, 2011

Today: Parallel Computation

Why is parallel computation important?

What is parallel computation?

Some examples in Python

3

3Tuesday, November 15, 2011

Today: Parallel Computation

Why is parallel computation important?

What is parallel computation?

Some examples in Python

Some problems with parallel computation

3

3Tuesday, November 15, 2011

Transistors

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

Microprocessor

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

Microprocessor
Transistors are arranged into “integrated circuits” on single
pieces of hardware.

4Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

Microprocessor
Transistors are arranged into “integrated circuits” on single
pieces of hardware.

A microprocessor, or processor is a large integrated circuit
of transistors where a computer’s instructions are executed.

4Tuesday, November 15, 2011

Microprocessors

5

5Tuesday, November 15, 2011

Microprocessors

5

Intel 4000
2300 Transistors

1971

5Tuesday, November 15, 2011

Microprocessors

5

Intel 4000
2300 Transistors

1971

National Semiconductor NS3008
~10,00 Transistors

1981

5Tuesday, November 15, 2011

Microprocessors

5

Intel 4000
2300 Transistors

1971

National Semiconductor NS3008
~10,00 Transistors

1981

1993

Intel Pentium
~3 million transistors

5Tuesday, November 15, 2011

Microprocessors

5

Intel 4000
2300 Transistors

1971

National Semiconductor NS3008
~10,00 Transistors

1981

1993

Intel Pentium
~3 million transistors

2000’s

AMD 64
~243 million transistors

5Tuesday, November 15, 2011

Moore’s law

6

6Tuesday, November 15, 2011

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip
would double every year.

6

6Tuesday, November 15, 2011

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip
would double every year.

46 years later, that prediction is still true.

6

6Tuesday, November 15, 2011

More transistors every year

7

7Tuesday, November 15, 2011

Physical limits

8

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits

8

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
 Transistors size limits

8

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
 Transistors size limits
 Instructions speed limits

8

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
 Transistors size limits
 Instructions speed limits

8

The solution: multiple microprocessors
Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8Tuesday, November 15, 2011

Parallel Computation

9

9Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)

9

9Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)

Executed simultaneously by multiple processors

9

9Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)

Executed simultaneously by multiple processors

In a shared memory environment

9

9Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y
read y: 6

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y
read y: 6
calculate 6+1: 7

10Tuesday, November 15, 2011

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y
read y: 6
calculate 6+1: 7
write y-> 7

10Tuesday, November 15, 2011

Parallel computing example

11

read x: 5
calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7
write y-> 7

x = 5
x = square(x)
y = 6
y = y+1

11Tuesday, November 15, 2011

Parallel computing example

12

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y
read x: 5 read y: 6

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7
write 25 -> x write 7 -> y

x = 5
x = square(x)

y = 6
y = y+1

12Tuesday, November 15, 2011

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7
write 25 -> x write 7 -> y

x = 5
x = square(x)

y = 6
y = y+1

x = 25
y = 7

12Tuesday, November 15, 2011

Shared memory

1312

13Tuesday, November 15, 2011

Shared memory

1312

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2
read x: 5

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2
read x: 5
calculate 5*5: 25 read x: 5

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> y

x = square(x) y = x + 1

x = 5

13Tuesday, November 15, 2011

Shared memory

1312

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> y

x = square(x) y = x + 1

x = 5

x = 25
y = 6

13Tuesday, November 15, 2011

How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?

14

14Tuesday, November 15, 2011

Shared memory

1512

15Tuesday, November 15, 2011

Shared memory

1512

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2
read x: 5

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2
read x: 5
calculate 5*5: 25 read x: 5

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> x

x = square(x) x = x + 1

x = 5

15Tuesday, November 15, 2011

Shared memory

1512

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> x

x = square(x) x = x + 1

x = 5

x = 6

15Tuesday, November 15, 2011

How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?

16

16Tuesday, November 15, 2011

Shared memory

1712

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5
read x: 5

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6
 write 6 -> x

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6
 write 6 -> x
write 25 -> x

x = square(x) x = x + 1

x = 5

17Tuesday, November 15, 2011

Shared memory

1712

P1 P2
 read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6
 write 6 -> x
write 25 -> x

x = square(x) x = x + 1

x = 5

x = 25

17Tuesday, November 15, 2011

Parallel computing example: bank balance

18

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)

18Tuesday, November 15, 2011

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)

w(8) w(7)

18Tuesday, November 15, 2011

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

19Tuesday, November 15, 2011

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

19Tuesday, November 15, 2011

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

19Tuesday, November 15, 2011

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

19Tuesday, November 15, 2011

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

print('Insufficient funds')

19Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

2

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

20Tuesday, November 15, 2011

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

20Tuesday, November 15, 2011

Next time: how to fix these problems

Locks, semaphores, conditions

21Tuesday, November 15, 2011

