61A Lecture 32

November 16th, 2011

Tuesday, November 15, 2011

Last time

Tuesday, November 15, 2011

Last time

Distributed systems

Tuesday, November 15, 2011

Last time

Distributed systems
Architectures

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server
- Peer-to-peer

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server
- Peer-to-peer

Message passing

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server
- Peer-to-peer
Message passing
- Protocols

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server
- Peer-to-peer
Message passing
- Protocols

System design principles

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
- Client-server
- Peer-to-peer

Message passing
- Protocols

System design principles
Modularity

Tuesday, November 15, 2011

Last time

Distributed systems

Architectures
Client-server
Peer-to—-peer

Message passing
Protocols

System design principles
Modularity
Interfaces

Tuesday, November 15, 2011

Today: Parallel Computation

Tuesday, November 15, 2011

Today: Parallel Computation

Why 1s parallel computation important?

Tuesday, November 15, 2011

Today: Parallel Computation

Why 1s parallel computation important?

What 1s parallel computation?

Tuesday, November 15, 2011

Today: Parallel Computation

Why 1s parallel computation important?
What 1s parallel computation?

Some examples in Python

Tuesday, November 15, 2011

Today: Parallel Computation

Why 1s parallel computation important?
What 1s parallel computation?
Some examples in Python

Some problems with parallel computation

Tuesday, November 15, 2011

Transistors

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Transistors are arranged into “integrated circuits” on single
pieces of hardware.

Tuesday, November 15, 2011

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Transistors are arranged into “integrated circuits” on single
pieces of hardware.

A microprocessor, or processor is a large integrated circuit
of transistors where a computer’s instructions are executed.

Tuesday, November 15, 2011

Microprocessors

Tuesday, November 15, 2011

Microprocessors

1971

Intel 4000
2300 Transistors

Tuesday, November 15, 2011

Microprocessors

1971

1981

Intei 4000 National Semiconductor NS3008
2300 Transistors ~10,00 Transistors

Tuesday, November 15, 2011

Microprocessors

1981

Intel 4000 National Semiconductor NS3008

2300 Transistors ~10,00 Transistors
1993

Intel Pentium
~3 million transistors

Tuesday, November 15, 2011

Microprocessors

1971

1981

Intel 4000 National Semiconductor NS3008
2300 Transistors ~10,00 Transistors
1993

Intel Pentium AMD 604
~3 million transistors ~243 million transistors

Tuesday, November 15, 2011

Moore’s law

Tuesday, November 15, 2011

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip
would double every year.

Tuesday, November 15, 2011

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip

would double every year.

46 years later, that prediction is still true.

Tuesday, November 15, 2011

More transistors every year

2,600,000,000 -

1,000,000,000 -

100,000,000 -

S 10,000,000 -
O
o
-
L
)

2 1,000,000 -
-
o
[—

100,000

10,000 -

2,300 -

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T2
Ste-Core Core I7

Six-Cora Xaon 7400 @ 10-Carm Xaon Wastman-EX

DualCore Harium 2@ @ ‘..-_-;--B-oom POWER7?
amp ko, i guad-cre 2196

N A ad-Core ltanum Tuswib

FOWERS® ‘.\ -~ B.Core Xoan Nehalom-EX

ltanum 2 with SME cache @ /%, Sx-Core Opteron 2400
AMD K10® Core 17 {Ouad)
tankm 2 @ t 1
® AMD K8
ol
Pantium 4 @ e ® Aom
L AMD K7
/" AMD KBl
curve shows transistor / AMD K&
count doubling every Pam’u mrlnum "
Iwo years /. enmws
/@ Pantium
803660
80206@
¢ o 80185
BooG @ @Enes
8085 .
“l°° ‘e ®68m
eoeo\. e
20080 T OMOS 6502
4004@ “pea 1802
| T T I 1
1971 1980 1990 2000 2011

Date of introduction

Tuesday, November 15, 2011

Physical limits

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
Transistors size limits

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
Transistors size limits
Instructions speed limits

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Tuesday, November 15, 2011

Physical limits

Manufacturers are reaching physical limits
Transistors size limits
Instructions speed limits

The solution: multiple microprocessors

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Tuesday, November 15, 2011

Parallel Computation

Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)

Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)

Executed simultaneously by multiple processors

Tuesday, November 15, 2011

Parallel Computation

A program (a set of instructions, a piece of code)
Executed simultaneously by multiple processors

In a shared memory environment

Tuesday, November 15, 2011

Parallel computing example

5
square(Xx)
6

y+1

<< X X
1

Tuesday, November 15, 2011

10

Parallel computing example

X =5
X = square(x)
y = 6
y = ytl
write 5 -> X

Tuesday, November 15, 2011

10

Parallel computing example

= 5

= square(x)
= 6

— y+1

write 5 -> X
read x: 5

<< X X

Tuesday, November 15, 2011

Parallel computing example

= 5

= square(x)
= 6

— y+1

write 5 -> x

read x: 5
calculate 5*5:

<< X X

25

Tuesday, November 15, 2011

10

Parallel computing example

= 5

= square(x)
= 6

— y+1

write 5 -> X
read x: 5

calculate 5*5: 25
write 25 -> X

<< X X

Tuesday, November 15, 2011

10

Parallel computing example

= 5

= square(x)
= 6

— y+1

Write 5 -> X

read x: 5
calculate 5*5: 25
write 25 -> X
Write 6 -> vy

<< X X

Tuesday, November 15, 2011

10

Parallel computing example

<< X X

5
square(Xx)
6

y+1

Write 5 -> X

read x: 5
calculate 5*5: 25
write 25 -> X
Write 6 -> vy

read y: 6

Parallel computing example

= 5

= square(x)
6

— y+1

Write 5 -> X

read x: 5
calculate 5*5: 25
write 25 -> X
Write 6 -> vy

read y: 6
calculate 6+1: 7/

<< X X
1

Parallel computing example

= 5

= square(x)
6

— y+1

Write 5 -> X

read x: 5
calculate 5*5: 25
write 25 -> X
Write 6 -> vy

read y: 6
calculate 6+1: 7/
Write y-> 7/

<< X X
1

Tuesday, November 15, 2011

Parallel computing example

= 5

X
X = sguare(x)
y:

y = y+l

read x: 5
calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7/
Write y-> 7/

Parallel computing example

X = 5
X = square(x)

< <

Tuesday, November 15, 2011

12

Parallel computing example

X = 5
X = square(x)

< <

Tuesday, November 15, 2011

12

Parallel computing example

X = 5

X = square(x)

P1
write 5

X

y = 6

y = y+l
P2

wWrite 6 -> vy

Tuesday, November 15, 2011

12

Parallel computing example

X = 5 y = 6

X = square(x) y = y+1

Pl P2

wWrite 5 -> X Write 6 -> vy
read x: 5 read y: 6

Tuesday, November 15, 2011

Parallel computing example

X = 5 y = 6

X = square(x) y = y+1

P1l P2

wWrite 5 -> X Write 6 -> vy
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7/

Parallel computing example

X = 5 y = 6

X = square(x) y = y+1

P1l P2

wWrite 5 -> X Write 6 -> vy
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7/
Write 25 -> X Write 7 -> vy

Parallel computing example

X = 5 y = 6

X = square(x) y = y+1

P1l P2

write 5 -> X Write 6 -> vy
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7/
Write 25 -> X Write 7 -> vy

X = 25
y = 7

Shared memory

Tuesday, November 15, 2011

13

Shared memory

Tuesday, November 15, 2011

13

Shared memory

X:

square(x)

Tuesday, November 15, 2011

13

Shared memory

X:

square(x)

P1

Tuesday, November 15, 2011

13

Shared memory

X:

square(x)

P1

read X:

5

Tuesday, November 15, 2011

13

Shared memory

X = 5
X = square(x) y = X
Pl P2
read x:. 5
calculate 5*5: 25 read X:

Shared memory

X = square(x) y = x + 1

P1 P2

read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6

Shared memory

X = 5
X = square(x) y = x + 1
Pl P2
read x:. 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
Write 6 -> vy

Shared memory

X = 5
X = square(x) y = x + 1
Pl P2
read x:. 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
Write 6 -> vy

X = 25
y = 6

How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?

Tuesday, November 15, 2011

14

Shared memory

Tuesday, November 15, 2011

15

Shared memory

Tuesday, November 15, 2011

15

Shared memory

X:

square(x)

Tuesday, November 15, 2011

15

Shared memory

®:

square(x)

Tuesday, November 15, 2011

15

Shared memory

@ = square(Xx)

P1

Tuesday, November 15, 2011

15

Shared memory

@ = square(Xx)

P1

read X:

5

Tuesday, November 15, 2011

15

Shared memory

@ = square(Xx)

Pl
read x: 5
Calculate 5*5:

25

Shared memory

@ = square(Xx)

Pl

read x: 5
calculate 5*5:
write 25 -> X

25

5
q:):=><-+ 1

P2
read x: 5
calculate

5+1:

6

Shared memory

X = 5
®= square(x) @z X + 1
P1 P2
read x: 5
calculate 5*5: 25 read XxX: 5
write 25 -> x calculate 5+1: 6
wWrite 6 -> X

Shared memory

X = 5
®= square(x) @z X + 1
P1 P2
read x: 5
calculate 5*5: 25 read XxX: 5
write 25 -> x calculate 5+1: 6
wWrite 6 -> X

X = 6

How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?

Tuesday, November 15, 2011

16

Shared memory

®:

square(x)

Tuesday, November 15, 2011

17

Shared memory

square(x)

®:

P1

Tuesday, November 15, 2011

17

Shared memory

square(x)

®:

P1

Tuesday, November 15, 2011

17

Shared memory

@ = square(Xx)

P1

read X:

5

Tuesday, November 15, 2011

17

Shared memory

X = 5
®= square(x) @z X + 1
P1 P2
read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6

Shared memory

X = 5
®= square(x) @z X + 1
P1 P2
read x: 5
read x:. 5
calculate 5*5: 25 calculate 5+1: 6
wWrite 6 -> X

Shared memory

X = 5

®= square(x) @z X + 1

P1 P2
read x: 5

read x:. 5

calculate 5*5: 25 calculate 5+1: 6
wWrite 6 -> X

write 25 -> X

Shared memory

X = 5

®= square(x) @z X + 1

P1 P2
read x: 5

read x:. 5

calculate 5*5: 25 calculate 5+1: 6
wWrite 6 -> X

write 25 -> X

X = 25

Parallel computing example: bank balance

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance
1T amount > balance:

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:
print('Insufficient funds')

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:
print('Insufficient funds')
else:

Tuesday, November 15, 2011

18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
1f amount > balance:
print('Insufficient funds')
else:
balance = balance - amount

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :

global balance

1f amount > balance:
print('Insufficient funds')

else:
balance = balance - amount
print(balance)

Tuesday, November 15, 2011 18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
1f amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

Tuesday, November 15, 2011 18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:

print('Insufficient funds')
else:

balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)

Tuesday, November 15, 2011 18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:

print('Insufficient funds')
else:

balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
W(8) Ww(7/)

Tuesday, November 15, 2011 18

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

Tuesday, November 15, 2011

19

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

Tuesday, November 15, 2011

19

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(38)

wW(7/)

Tuesday, November 15, 2011

19

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make_withdraw(10)
balance 2

W(38)

Tuesday, November 15, 2011

19

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make_withdraw(10)
balance = 18§ 2 or 3

W(38)

w(7)

print('Insufficient funds')

Tuesday, November 15, 2011

19

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(38)

wW(7/)

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(38)

wW(7/)

read global

balance: 10

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(8) W(7)
read global balance: 10
read amount: 8 read global balance: 10

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance

return withdraw

if amount > balance:
print('Insufficient funds')

else:
balance

print(balance)

balance - amount

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :

global balance

if amount > balance:
print('Insufficient funds')

return withdraw

else:
balance

= balance - amount
print(balance)

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

1f False

/ > 10: False

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :

global balance

if amount > balance:
print('Insufficient funds')

return withdraw

else:
balance

= balance - amount
print(balance)

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10

read amount: 8
8 > 10: False
if False

10 - 8: 2

read global balance: 10
read amount: 7/

/ > 10: False

1f False

Tuesday, November 15, 2011

20

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance = 18 2

Ww(3) W(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance = 18 2

W(38) w(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

if False / > 10: False

10 - 8: 2 if False
write balance -> 2 10 - 7: 3

print 2 write balance -> 3

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance

W(38)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

if False / > 10: False

10 - 8: 2 if False
write balance -> 2 10 - 7: 3

print 2 write balance -> 3

Tuesday, November 15, 2011

Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance
W(3)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3
print 3

Tuesday, November 15, 2011

Next time: how to fix these problems

Locks, semaphores, conditions

Tuesday, November 15, 2011

21

