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Today: Parallel Computation

Why 1s parallel computation important?
What 1s parallel computation?
Some examples in Python

Some problems with parallel computation

Tuesday, November 15, 2011



Transistors

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Transistors are arranged into “integrated circuits” on single
pieces of hardware.

Tuesday, November 15, 2011



Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.

Transistors are now less than 100 nanometers 1n size.

Microprocessor

Transistors are arranged into “integrated circuits” on single
pieces of hardware.

A microprocessor, or processor is a large integrated circuit
of transistors where a computer’s instructions are executed.
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Microprocessors

1971

1981

Intel 4000 National Semiconductor NS3008
2300 Transistors ~10,00 Transistors
1993

Intel Pentium AMD 604
~3 million transistors ~243 million transistors
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Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip

would double every year.

46 years later, that prediction is still true.
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Transistors size limits
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Physical limits

Manufacturers are reaching physical limits
Transistors size limits
Instructions speed limits

The solution: multiple microprocessors

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.
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Parallel Computation

A program (a set of instructions, a piece of code)
Executed simultaneously by multiple processors

In a shared memory environment
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Parallel computing example

5
square(Xx)
6

y+1

<< X X
1
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read x: 5
calculate 5*5:
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Parallel computing example

= 5

= square(x)
6

— y+1

Write 5 -> X

read x: 5
calculate 5*5: 25
write 25 -> X
Write 6 -> vy

read y: 6
calculate 6+1: 7/
Write y-> 7/

<< X X
1
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Parallel computing example

= 5

X
X = sguare(x)
y:

y = y+l

read x: 5
calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7/
Write y-> 7/
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Parallel computing example

X = 5

X = square(x)

P1
write 5

X

y = 6

y = y+l
P2

wWrite 6 -> vy
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X = 5 y = 6

X = square(x) y = y+1

P1l P2

write 5 -> X Write 6 -> vy
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7/
Write 25 -> X Write 7 -> vy

X = 25
y = 7
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Shared memory

X = 5
X = square(x) y = x + 1
Pl P2
read x:. 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
Write 6 -> vy

X = 25
y = 6




How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?
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Shared memory
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Pl
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Shared memory

@ = square(Xx)

Pl

read x: 5
calculate 5*5:
write 25 -> X

25

5
q:):=><-+ 1

P2
read x: 5
calculate

5+1:

6
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read x: 5
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write 25 -> x calculate 5+1: 6
wWrite 6 -> X

X = 6
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calculate 5*5: 25 calculate 5+1: 6
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Shared memory

X = 5

®= square(x) @z X + 1

P1 P2
read x: 5

read x:. 5

calculate 5*5: 25 calculate 5+1: 6
wWrite 6 -> X

write 25 -> X

X = 25
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def withdraw(amount):
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def withdraw(amount) :
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if amount > balance:
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balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(38)
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make_withdraw(10)
balance 2

W(38)

Tuesday, November 15, 2011

19



Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make_withdraw(10)
balance = 18§ 2 or 3

W(38)

w(7)

print('Insufficient funds')
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return withdraw

W = make withdraw(1l0)
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(38)

wW(7/)

read global

balance: 10
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

W(8) W(7)
read global balance: 10
read amount: 8 read global balance: 10
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance

return withdraw

if amount > balance:
print('Insufficient funds')

else:
balance

print(balance)

balance - amount

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :

global balance

if amount > balance:
print('Insufficient funds')

return withdraw

else:
balance

= balance - amount
print(balance)

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

1f False

/ > 10: False
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :

global balance

if amount > balance:
print('Insufficient funds')

return withdraw

else:
balance

= balance - amount
print(balance)

W = make withdraw(1l0)
balance = 10
Ww(3) Ww(7)
read global balance: 10

read amount: 8
8 > 10: False
if False

10 - 8: 2

read global balance: 10
read amount: 7/

/ > 10: False

1f False
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make withdraw(1l0)
balance = 10

Ww(3) Ww(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance = 18 2

Ww(3) W(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance = 18 2

W(38) w(7)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

if False / > 10: False

10 - 8: 2 if False
write balance -> 2 10 - 7: 3

print 2 write balance -> 3
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance

W(38)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/

if False / > 10: False

10 - 8: 2 if False
write balance -> 2 10 - 7: 3

print 2 write balance -> 3
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Parallel computing example: bank balance

def make withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

W = make w1thdraw(1®)

balance
W(3)
read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7/
if False / > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3
print 3
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Next time: how to fix these problems

Locks, semaphores, conditions
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