61A Lecture 32

November 16th, 2011

Last time

Distributed systems

- Architectures
- Client-server
- Peer-to-peer
- Message passing
- Protocols

System design principles

- Modularity
- Interfaces

Transistors

Computers execute instructions by manipulating the flow of electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.
Transistors are now less than 100 nanometers in size.
Microprocessor
Transistors are arranged into "integrated circuits" on single pieces of hardware.

A microprocessor, or processor is a large integrated circuit of transistors where a computer's instructions are executed.

Moore's law

In 1965, the co-founder of Intel, Gordon Moore predicted that the number of transistors that could be fit onto a single chip would double every year.

46 years later, that prediction is still true.

Physical limits

Manufacturers are reaching physical limits

- Transistors size limits
" Instructions speed limits

The solution: multiple microprocessors
Instead of trying to fit more transistors into a single processor, we are turning to multiple processors.

Parallel Computation
A program (a set of instructions, a piece of code)
Executed simultaneously by multiple processors
In a shared memory environment

Parallel computing example
$x=5$
$x=$ square (x)
$y=6$
$y=y+1$
write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y
read y: 6
calculate 6+1: 7
write $y->7$

Parallel computing example
$x=5$
$x=$ square (x)
$y=6$
$y=y+1$
read x: 5
calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7
write $y->7$

Parallel computing example

$\begin{aligned} & x=5 \\ & x=\text { square }(x) \end{aligned}$	$y=6$ $y=y+1$
P1 write 5 -> x read x: 5 calculate 5*5: 25 write 25 -> x	P2 write 6 -> y read y: 6 calculate 6+1: write 7 -> y
$\begin{gathered} x=25 \\ y=7 \end{gathered}$	

How many different values of x and y can there be?
Quiz:

How many different values of x and y can there be at the end?

How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?

Shared memory

$x=5$

$x=\text { square }(x)$	$x=x+1$
P1	$\mathrm{P} 2$ read x: 5
read x: 5 calculate 5*5: 25 write 25 -> x	calculate 5+1: 6 write 6 -> x
$\mathrm{x}=$	25

$x=25$

Parallel computing example: bank balance
def make_withdraw (balance)
def withdraw(amount):
global balance
print (I
else:
balance = balance - amount
print(balance)
return withdraw

$W=$ make_withdraw (10)
balance $=1 \% 2$ or 3

print('Insufficient funds')

Parallel computing example: bank balance
def make_withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount print(balance)

return withdraw

w = make_withdraw(10)
W (8) W(7)

Parallel computing example: bank balance
def make_withdraw(balance):
def withdraw(amount)
global balance
balance.
else:
balance = balance - amount print(balance)
return withdraw

$W=$ make_withdraw (10) balance $=1 \not 23$
$W(8)$

read global balance: 10
read amount: 8
$8>10$: False
if False
10-8: 2
write balance -> 2
print 2
read global balance: 10
read amount: 7
$7>10$: False
if False
10 -7:3
write balance -> 3
print 3

Next time: how to fix these problems

Locks, semaphores, conditions

