
61A Lecture 32

November 16th, 2011

1

Last time

Distributed systems
! Architectures
• Client-server
• Peer-to-peer

! Message passing
• Protocols

System design principles
! Modularity
! Interfaces

2

2

Today: Parallel Computation

Why is parallel computation important?

What is parallel computation?

Some examples in Python

Some problems with parallel computation

3

3

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.

4

Microprocessor
Transistors are arranged into “integrated circuits” on single
pieces of hardware.

A microprocessor, or processor is a large integrated circuit
of transistors where a computer’s instructions are executed.

4

Microprocessors

5

Intel 4000
2300 Transistors

1971

National Semiconductor NS3008
~10,00 Transistors

1981

1993

Intel Pentium
~3 million transistors

2000’s

AMD 64
~243 million transistors

5

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip
would double every year.

46 years later, that prediction is still true.

6

6

More transistors every year

7

7

Physical limits

Manufacturers are reaching physical limits
! Transistors size limits
! Instructions speed limits

8

The solution: multiple microprocessors
Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

8

Parallel Computation

A program (a set of instructions, a piece of code)

Executed simultaneously by multiple processors

In a shared memory environment

9

9

Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1

10

write 5 -> x
read x: 5
calculate 5*5: 25
write 25 -> x
write 6 -> y
read y: 6
calculate 6+1: 7
write y-> 7

10

Parallel computing example

11

read x: 5
calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7
write y-> 7

x = 5
x = square(x)
y = 6
y = y+1

11

Parallel computing example

12

P1 P2
write 5 -> x write 6 -> y
read x: 5 read y: 6
calculate 5*5: 25 calculate 6+1: 7
write 25 -> x write 7 -> y

x = 5
x = square(x)

y = 6
y = y+1

x = 25
y = 7

12

Shared memory

1312

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> y

x = square(x) y = x + 1

x = 5

x = 25
y = 6

13

How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?

14

14

Shared memory

1512

P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
 write 6 -> x

x = square(x) x = x + 1

x = 5

x = 6

15

How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?

16

16

Shared memory

1712

P1 P2
 read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6
 write 6 -> x
write 25 -> x

x = square(x) x = x + 1

x = 5

x = 25

17

Parallel computing example: bank balance

18

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)

w(8) w(7)

18

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

print('Insufficient funds')

19

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 global balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read global balance: 10
read amount: 8 read global balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

20

Next time: how to fix these problems

Locks, semaphores, conditions

21

