61A Lecture 32

November 16th, 2011

Last time

Distributed systems
Architectures
- Client-server
Peer-to-peer
Message passing
Protocols

System design principles
Modularity
Interfaces

Today: Parallel Computation

Why is parallel computation important?
What is parallel computation?
Some examples in Python

Some problems with parallel computation

Microprocessors

1971

1981

Intel 4000 National Semiconductor NS3008

2300 Transistors ~10,00 Transistors
1993 2000" s

Intel Pentium AMD 64
~3 million transistors ~243 million transistors

Transistors

Computers execute instructions by manipulating the flow of
electricity through transistors.

Transistors are made from semiconductors, like silicon.
More transistors = more power.
Transistors are now less than 100 nanometers in size.

Microprocessor

Transistors are arranged into “integrated circuits” on single
pieces of hardware.

A microprocessor, or processor is a large integrated circuit
of transistors where a computer’s instructions are executed.

Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that
the number of transistors that could be fit onto a single chip
would double every year.

46 years later, that prediction is still true.




More transistors every year

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 -
1,000,000,000

100,000,000 -

10,000,000+

1,000,000 by

Transistor count

100,000

10,000 4

2,300

1971 1980 1990 2000 2011

Date of introduction

Physical limits

Manufacturers are reaching physical limits
Transistors size limits
Instructions speed limits

The solution: multiple microprocessors

Instead of trying to fit more transistors into a single
processor, we are turning to multiple processors.

Parallel Computation

A program (a set of instructions, a piece of code)
Executed simultaneously by multiple processors

In a shared memory environment

Parallel computing example

X =5

X = sguaregxz
y:

y = y+l

read x: 5

calculate 5*5: 25
write 25 -> x
read y: 6
calculate 6+1: 7
write y-> 7

Parallel computing example

X =5

X = square(x)
y =6

y = y+l
write 5 -> x
read x: 5

calculate 5*5: 25
write 25 -> x
write 6 -> vy

read y: 6
calculate 6+1: 7
write y-> 7

Parallel computing example

X =5 y =6

X = square(x) y = y+1

Pl P2

write 5 -> x write 6 -> vy
read x: 5 read y: 6
calculate 5*%5: 25 calculate 6+1:
write 25 -> x write 7 ->y

x = 25
y =7




Shared memory

How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?

X =5
X = square(Xx) y =x +1
P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
write 6 -> vy
X = 25
y =6
Shared memory
‘ X =5
x)= square(x) x)= x + 1
P1 P2
read x: 5
calculate 5*5: 25 read x: 5
write 25 -> x calculate 5+1: 6
write 6 -> x
X = 6
Shared memory
\ X =5
x)= square(x) x)= x + 1
P1 P2
read x: 5
read x: 5
calculate 5*5: 25 calculate 5+1: 6
write 6 -> x
write 25 -> x
X = 25 ‘

How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?

Parallel computing example: bank balance

def make_withdraw(balance):
def withdraw(amount) :
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance -
print(balance)
return withdraw

amount

w = make withdraw(10)

w(8) w(7)




Parallel computing example: bank balance

def make_withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:

print('Insufficient funds')
else:

balance = balance - amount

print(balance)
return withdraw

w = make_withdraw(10)
balance = ]}f 2 or3

W(8) )

print('Insufficient funds')

Next time: how to fix these problems

Locks, semaphores, conditions

21

Parallel computing example: bank balance

def make_withdraw(balance):
def withdraw(amount):
global balance
if amount > balance:
print('Insufficient funds')
else:
balance = balance - amount
print(balance)
return withdraw

w = make_withdraw(10)
balance = ]}f,! 3

W(8) | WD

read global balance: 10
read amount: 8

read global balance: 10
8 > 10: False

read amount: 7

if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7:

print 2

write balance -> 3
print 3




