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Last time

Distributed systems
! Architectures
•  Client-server
•  Peer-to-peer

! Message passing
•  Protocols

System design principles
! Modularity
! Interfaces
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Today: Parallel Computation

Why is parallel computation important?

What is parallel computation?

Some examples in Python

Some problems with parallel computation
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Transistors

Computers execute instructions by manipulating the flow of 
electricity through transistors.

Transistors are made from semiconductors, like silicon.

More transistors = more power.

Transistors are now less than 100 nanometers in size.
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Microprocessor
Transistors are arranged into “integrated circuits” on single 
pieces of hardware. 

A microprocessor, or processor is a large integrated circuit 
of transistors where a computer’s instructions are executed. 
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Microprocessors
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Intel 4000 
2300 Transistors

1971

National Semiconductor NS3008 
~10,00 Transistors

1981

1993

Intel Pentium
~3 million transistors

2000’s

AMD 64
~243 million transistors
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Moore’s law

In 1965, the co-founder of Intel, Gordon Moore predicted that 
the number of transistors that could be fit onto a single chip 
would double every year.

46 years later, that prediction is still true. 
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More transistors every year
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Physical limits

Manufacturers are reaching physical limits
! Transistors size limits
! Instructions speed limits
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The solution: multiple microprocessors
Instead of trying to fit more transistors into a single 
processor, we are turning to multiple processors.
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Parallel Computation

A program (a set of instructions, a piece of code)

Executed simultaneously by multiple processors

In a shared memory environment
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Parallel computing example

x = 5
x = square(x)
y = 6
y = y+1
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write 5 -> x
read x: 5
calculate 5*5: 25     
write 25 -> x
write 6 -> y
read y: 6
calculate 6+1: 7
write y-> 7                      
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Parallel computing example
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read x: 5
calculate 5*5: 25     
write 25 -> x
read y: 6
calculate 6+1: 7
write y-> 7                      

x = 5
x = square(x)
y = 6
y = y+1
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Parallel computing example
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P1                P2
write 5 -> x        write 6 -> y                     
read x: 5           read y: 6
calculate 5*5: 25   calculate 6+1: 7
write 25 -> x       write 7 -> y                     

x = 5
x = square(x)

y = 6
y = y+1

x = 25
y = 7
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Shared memory
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P1                P2
read x: 5           
calculate 5*5: 25   read x: 5
write 25 -> x       calculate 5+1: 6  
                    write 6 -> y                     

x = square(x) y = x + 1

x = 5

x = 25
y = 6
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How many different values of x and y can there be?

Quiz:

How many different values of x and y can there be at the end?
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Shared memory
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P1                P2
read x: 5           
calculate 5*5: 25   read x: 5
write 25 -> x       calculate 5+1: 6  
                    write 6 -> x                     

x = square(x) x = x + 1

x = 5

x = 6
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How many different values of x can there be?

Quiz:

How many different values of x can there be at the end?
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Shared memory
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P1                P2
                    read x: 5
read x: 5
calculate 5*5: 25   calculate 5+1: 6        
                    write 6 -> x
write 25 -> x        

x = square(x) x = x + 1

x = 5

x = 25
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Parallel computing example: bank balance
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   def make_withdraw(balance):
        def withdraw(amount):
            global balance
            if amount > balance:
                print('Insufficient funds')
            else:
                balance = balance - amount
                print(balance)
        return withdraw

   w = make_withdraw(10)

w(8) w(7)
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Parallel computing example: bank balance
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   def make_withdraw(balance):
        def withdraw(amount):
            global balance
            if amount > balance:
                print('Insufficient funds')
            else:
                balance = balance - amount
                print(balance)
        return withdraw

   w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

print('Insufficient funds')
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Parallel computing example: bank balance
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   def make_withdraw(balance):
        def withdraw(amount):
            global balance
            if amount > balance:
                print('Insufficient funds')
            else:
                balance = balance - amount
                print(balance)
        return withdraw

   w = make_withdraw(10)
balance = 10

w(8) w(7)

                                print 3

read global balance: 10
read amount: 8                  read global balance: 10
8 > 10: False                   read amount: 7
if False                        7 > 10: False
10 - 8: 2                       if False
write balance -> 2              10 - 7: 3
print 2                         write balance -> 3

2 3
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Next time: how to fix these problems

Locks, semaphores, conditions
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