
61A Lecture 33

18th November, 2011

Friday, November 18, 2011

Last time

2

Friday, November 18, 2011

Last time

Why is parallel computation important?

2

Friday, November 18, 2011

Last time

Why is parallel computation important?

What is parallel computation?

2

Friday, November 18, 2011

Last time

Why is parallel computation important?

What is parallel computation?

Some examples in Python

2

Friday, November 18, 2011

Last time

Why is parallel computation important?

What is parallel computation?

Some examples in Python

Some problems with parallel computation

2

Friday, November 18, 2011

Parallel computation terminology

3

Friday, November 18, 2011

Parallel computation terminology

Processor

3

Friday, November 18, 2011

Parallel computation terminology

Processor
 One of (possibly) many pieces of hardware responsible for
executing instructions

3

Friday, November 18, 2011

Parallel computation terminology

Processor
 One of (possibly) many pieces of hardware responsible for
executing instructions

Thread

3

Friday, November 18, 2011

Parallel computation terminology

Processor
 One of (possibly) many pieces of hardware responsible for
executing instructions

Thread
 One of (possibly) many simultaneous sequences of
instructions, being executed in a shared memory
environment

3

Friday, November 18, 2011

Parallel computation terminology

Processor
 One of (possibly) many pieces of hardware responsible for
executing instructions

Thread
 One of (possibly) many simultaneous sequences of
instructions, being executed in a shared memory
environment

Shared memory

3

Friday, November 18, 2011

Parallel computation terminology

Processor
 One of (possibly) many pieces of hardware responsible for
executing instructions

Thread
 One of (possibly) many simultaneous sequences of
instructions, being executed in a shared memory
environment

Shared memory
 The environment in which threads are executed, containing
variables that are accessible to all the threads.

3

Friday, November 18, 2011

Today: dealing with shared memory

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

Protecting vulnerable sections

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

Protecting vulnerable sections
 Locks

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

Protecting vulnerable sections
 Locks
 Semaphores

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

Protecting vulnerable sections
 Locks
 Semaphores
 Conditions

4

Friday, November 18, 2011

Today: dealing with shared memory

“Vulnerable sections” of a program
 Critical Sections
 Atomicity

Correctness
 What does “correctness” mean for parallel computation?

Protecting vulnerable sections
 Locks
 Semaphores
 Conditions

Deadlock

4

Friday, November 18, 2011

5

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

Friday, November 18, 2011

5

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

Friday, November 18, 2011

5

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

Friday, November 18, 2011

5

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

Friday, November 18, 2011

5

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

print('Insufficient funds')

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

2

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

Friday, November 18, 2011

Parallel computing example: bank balance

6

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

$15 withdrawn from a $10 account?
With $3 left? Inconceivable!

Friday, November 18, 2011

7

Parallel computing example: bank balance

20

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

2 or 3

print('Insufficient funds')

Friday, November 18, 2011

Another problem: vector mathematics

8

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()A= 2

 5 ()V= 12
 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()A= 2

 5 ()V= 12
 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()

write 2 -> V1 read M2: (1 2)

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()

write 2 -> V1 read M2: (1 2)
 read A: (2 5)

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()

write 2 -> V1 read M2: (1 2)
 read A: (2 5)
 calculate (1 2).(2 5):12

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()

write 2 -> V1 read M2: (1 2)
 read A: (2 5)
 calculate (1 2).(2 5):12
 write 12 -> V2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

Friday, November 18, 2011

B= 2 C= 0 M= 1 2
 0 5 1 2

Vector mathematics

9

() () ()
A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

read M1: (1 2) read C2: 5
read A: (2 0) calculate 5+0: 5
calculate (1 2).(2 0): 2 write 5 -> A2

A= 2
 5 ()

write 2 -> V1 read M2: (1 2)
 read A: (2 5)
 calculate (1 2).(2 5):12
 write 12 -> V2

A= 2
 5 ()V= 12

 12 ()

A = B+C
V = MxA

V= 2
 12 ()

Friday, November 18, 2011

Vector mathematics

A = B+C
V = MxA

Friday, November 18, 2011

Vector mathematics

A = B+C
V = MxA

Friday, November 18, 2011

Vector mathematics

A = B+C
V = MxA

Step 1

Friday, November 18, 2011

Vector mathematics

A = B+C
V = MxA

Step 1

Step 2

Friday, November 18, 2011

Vector mathematics

A = B+C
V = MxA

Step 1

Step 2

Threads must wait for each other.
Only move on when all have finished previous step.

Friday, November 18, 2011

Correctness

The outcome should always be equivalent to some serial
ordering of individual steps.

serial ordering: if the threads were executed individually,
from start to finish, one after the other instead of in
parallel.

11

Friday, November 18, 2011

Problem 1: inconsistent values

12

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values

12

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing

12

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value

12

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads
 Operations is a series of steps

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads
 Operations is a series of steps
 Threads must wait until all have finished previous step

Need ways to make threads wait.

Friday, November 18, 2011

Problem 1: inconsistent values

13

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values

13

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing

13

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value

13

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............
write shared variable

P1 P2

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............
write shared variable

P1 P2

Should not be interrupted
by other threads that
access same variable

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............
write shared variable

P1 P2

Should not be interrupted
by other threads that
access same variable

harmless code

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............
write shared variable

P1 P2

Should not be interrupted
by other threads that
access same variable

harmless code
harmless code

Friday, November 18, 2011

Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code
harmless code
modify shared variable
............
............
............
............
write shared variable

P1 P2

Should not be interrupted
by other threads that
access same variable

harmless code
harmless code

Critical Section

Friday, November 18, 2011

Terminology

14

Friday, November 18, 2011

Terminology

“Critical section”

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like
a single hardware instruction.

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like
a single hardware instruction.

 Atomicity: a guarantee that the code will not be
interrupted.

14

Friday, November 18, 2011

Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like
a single hardware instruction.

 Atomicity: a guarantee that the code will not be
interrupted.

Critical sections need to have atomicity.

14

Friday, November 18, 2011

Protecting shared state with shared state

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

Convention and shared rules for signals protect shared state.

15

Friday, November 18, 2011

Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

Convention and shared rules for signals protect shared state.
 Like traffic signals “protect” an intersection

15

Friday, November 18, 2011

Locks

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.
 No other threads will be able to acquire()

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.
 No other threads will be able to acquire()
 They will automatically wait until ...

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.
 No other threads will be able to acquire()
 They will automatically wait until ...

release()

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.
 No other threads will be able to acquire()
 They will automatically wait until ...

release()
 “unset” a signal.

16

Friday, November 18, 2011

Locks

Implemented using real atomic hardware instructions.

Used to signal that a shared resource is in use.

acquire()
 “set” the signal.
 No other threads will be able to acquire()
 They will automatically wait until ...

release()
 “unset” a signal.
 Any one thread that was waiting for acquire() will now
succeed

16

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3

2

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

Friday, November 18, 2011

Using locks: bank balance example

17

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

 w = make_withdraw(10)
balance = 10

w(8) w(7)

 print 3

read balance: 10
read amount: 8 read balance: 10
8 > 10: False read amount: 7
if False 7 > 10: False
10 - 8: 2 if False
write balance -> 2 10 - 7: 3
print 2 write balance -> 3

2 3

critical section

Friday, November 18, 2011

Using locks: bank balance example

18

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

Friday, November 18, 2011

Using locks: bank balance example

18

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

18

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

 def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 print('Insufficient funds')
 else:
 balance = balance - amount
 print(balance)
 return withdraw

critical section

New code

Friday, November 18, 2011

Using locks: bank balance example

19

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait

acquired by p1

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2
 read amount: 7

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2
 read amount: 7
 7 > 2: True

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2
 read amount: 7
 7 > 2: True
 if True

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2
 read amount: 7
 7 > 2: True
 if True
 print 'Insufficient funds'

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok

acquired by p2

 read balance: 2
 read amount: 7
 7 > 2: True
 if True
 print 'Insufficient funds'
 release balance_lock

Friday, November 18, 2011

Using locks: bank balance example

19

 w = make_withdraw(10)
balance = 10

balance_lock = Lock()

w(8) w(7)

P1 P2
acquire balance_lock: ok
read balance: 10 acquire balance_lock: wait
read amount: 8 wait
8 > 10: False wait
if False wait
10 - 8: 2 wait
write balance -> 2 wait
print 2 wait
release balance_lock wait
 acquire balance_lock:ok
 read balance: 2
 read amount: 7
 7 > 2: True
 if True
 print 'Insufficient funds'
 release balance_lock

Friday, November 18, 2011

Quiz: does this solution enforce correctness?

20

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

No two processes can be in the critical section at the same
time.

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

No two processes can be in the critical section at the same
time.

Whichever gets to balance_lock.acquire() first gets to finish.

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

No two processes can be in the critical section at the same
time.

Whichever gets to balance_lock.acquire() first gets to finish.

All others have to wait until it’s finished.

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

No two processes can be in the critical section at the same
time.

Whichever gets to balance_lock.acquire() first gets to finish.

All others have to wait until it’s finished.

important, allows others
to proceed

Friday, November 18, 2011

Answer: yes

21

def make_withdraw(balance)
 balance_lock = Lock()
 def withdraw(amount):
 nonlocal balance
 # try to acquire the lock
 balance_lock.acquire()
 # once successful, enter the critical section
 if amount > balance:
 print("Insufficient funds")
 else:
 balance = balance - amount
 print(balance)
 # upon exiting the critical section, release the lock
 balance_lock.release()

No two processes can be in the critical section at the same
time.

Whichever gets to balance_lock.acquire() first gets to finish.

All others have to wait until it’s finished.

important, allows others
to proceed

remember: always
release your locks.

Friday, November 18, 2011

Semaphores

22

Friday, November 18, 2011

Semaphores

Used to protect access to limited resources

Each has a limit, N

Can be acquire()’d N times

After that, processes trying to acquire() automatically wait

Until another process release()’s

22

Friday, November 18, 2011

Semaphores example: database

23

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore
 db_semaphore.acquire()

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore
 db_semaphore.acquire()
 # if successful, proceed

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore
 db_semaphore.acquire()
 # if successful, proceed
 database.insert(data)

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore
 db_semaphore.acquire()
 # if successful, proceed
 database.insert(data)
 #release the semaphore

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Semaphores example: database

23

 # set up the semaphore
 db_semaphore = Semaphore(2)

 def insert(data):
 # try to acquire the semaphore
 db_semaphore.acquire()
 # if successful, proceed
 database.insert(data)
 #release the semaphore
 db_semaphore.release()

A database that can only support 2 connections at a time.

Friday, November 18, 2011

Example: database

24

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database
release db_semaphore: ok acquire db_semaphore: ok insert 9 into database

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database
release db_semaphore: ok acquire db_semaphore: ok insert 9 into database
 read data: 8 release db_semaphore: ok

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database
release db_semaphore: ok acquire db_semaphore: ok insert 9 into database
 read data: 8 release db_semaphore: ok
 read global database

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database
release db_semaphore: ok acquire db_semaphore: ok insert 9 into database
 read data: 8 release db_semaphore: ok
 read global database
 insert 8 into database

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Example: database

24

insert(7) insert(8) insert(9)

P1 P2 P3

acquire db_semaphore: ok acquire db_semaphore: wait acquire db_semaphore: ok
read data: 7 wait read data: 9
read global database wait
insert 7 into database wait read global database
release db_semaphore: ok acquire db_semaphore: ok insert 9 into database
 read data: 8 release db_semaphore: ok
 read global database
 insert 8 into database
 release db_semaphore: ok

 db_semaphore = Semaphore(2)

 def insert(data):
 db_semaphore.acquire()
 database.insert(data)
 db_semaphore.release()

Friday, November 18, 2011

Conditions

Conditions are signals used to coordinate multiple processes

Processes can wait() on a condition

Other processes can notify() processes waiting for a
condition.

25

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):
 start_step2.notifyAll()

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):
 start_step2.notifyAll()
 start_step2.release()

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):
 start_step2.notifyAll()
 start_step2.release()

def do_step_2(index):

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):
 start_step2.notifyAll()
 start_step2.release()

def do_step_2(index):
 start_step2.wait()

Friday, November 18, 2011

Conditions example: vector mathematics

26

A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
 A[index] = B[index] + C[index]
 start_step2.acquire()
 step1_finished += 1
 if(step1_finished == 2):
 start_step2.notifyAll()
 start_step2.release()

def do_step_2(index):
 start_step2.wait()
 V[index] = M[index] . A

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

step1_finished=0

start_step2 = Condition()

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

step1_finished=0

start_step2 = Condition()

step1_finished=1

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5
step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

start_step2: wait step1_finished == 2: true

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

start_step2: wait step1_finished == 2: true
start_step_2: wait notifyAll start_step_2: ok

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

start_step2: wait step1_finished == 2: true
start_step_2: wait notifyAll start_step_2: ok
read M1: (1 2)

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

start_step2: wait step1_finished == 2: true
start_step_2: wait notifyAll start_step_2: ok
read M1: (1 2)
read A:(2 5) read M2(1 2)

Friday, November 18, 2011

Conditions example: vector mathematics

27

B= 2 C= 0 M= 1 2
 0 5 1 2() () ()

A1 = B1+C1

V1 = M1.A
A2 = B2+C2

V2 = M2.A
P1 P2
read B1: 2
read C1: 0
calculate 2+0: 2
write 2 -> A1 read B2: 0

A= 2
 0 ()

acquire start_step2: ok read C2: 0
write 1 -> step1_finished calculate 5+0: 5

A= 2
 5 ()

step1_finished == 2: false write 5-> A2

step1_finished=0

start_step2 = Condition()

step1_finished=1

release start_step2: ok acquire start_step2: ok
start_step2: wait write 2-> step1_finished

step1_finished=2

start_step2: wait step1_finished == 2: true
start_step_2: wait notifyAll start_step_2: ok
read M1: (1 2)
read A:(2 5) read M2(1 2)
calculate (1 2). (2 5): 12 read A: (2 5)

Friday, November 18, 2011

Deadlock

A condition in which threads are stuck waiting for each other
forever

28

Friday, November 18, 2011

Deadlock example

29

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()
 x_lock.acquire()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()

Friday, November 18, 2011

Deadlock example

29

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()
>>> def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

Friday, November 18, 2011

Deadlock: example

30

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok
acquire y_lock: wait acquire x_lock:
wait

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok
acquire y_lock: wait acquire x_lock:
wait
wait wait

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok
acquire y_lock: wait acquire x_lock:
wait
wait wait
wait wait

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok
acquire y_lock: wait acquire x_lock:
wait
wait wait
wait wait
wait wait

Friday, November 18, 2011

Deadlock: example

30

compute() anti_compute()

 def anti_compute():
 y_lock.acquire()
 x_lock.acquire()
 y = y - x
 x = sqrt(x)
 x_lock.release()
 y_lock.release()

 def compute():
 x_lock.acquire()
 y_lock.acquire()
 y = x + y
 x = x * x
 y_lock.release()
 x_lock.release()

P1 P2
acquire x_lock: ok acquire y_lock: ok
acquire y_lock: wait acquire x_lock:
wait
wait wait
wait wait
wait wait
... ...

Friday, November 18, 2011

Deadlock

31

Friday, November 18, 2011

Next time

Sequences and Streams

Friday, November 18, 2011

