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 One of (possibly) many pieces of hardware responsible for 
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 One of (possibly) many simultaneous sequences of 
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variables that are accessible to all the threads.
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Correctness

The outcome should always be equivalent to some serial 
ordering of individual steps.

serial ordering: if the threads were executed individually, 
from start to finish, one after the other instead of in 
parallel.

11

Friday, November 18, 2011



Problem 1: inconsistent values

12

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values

12

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing

12

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value

12

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads
 Operations is a series of steps

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

12

Problem 2: unsynchronized threads

Unsynchronized threads
 Operations is a series of steps
 Threads must wait until all have finished previous step

Need ways to make threads wait.

Friday, November 18, 2011



Problem 1: inconsistent values

13

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values

13

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing

13

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value

13

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............
write shared variable          

P1 P2

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............
write shared variable          

P1 P2

Should not be interrupted
by other threads that 
access same variable

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............
write shared variable          

P1 P2

Should not be interrupted
by other threads that 
access same variable

harmless code 

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............
write shared variable          

P1 P2

Should not be interrupted
by other threads that 
access same variable

harmless code 
harmless code         

Friday, November 18, 2011



Problem 1: inconsistent values

Inconsistent values
 A thread reads a value and starts processing
 Another thread changes the value
 The first thread’s value is inconsistent and out of date

13

harmless code 
harmless code
modify shared variable          
............
............
............
............
write shared variable          

P1 P2

Should not be interrupted
by other threads that 
access same variable

harmless code 
harmless code         

Critical Section

Friday, November 18, 2011



Terminology

14

Friday, November 18, 2011



Terminology

“Critical section”

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like 
a single hardware instruction.

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like 
a single hardware instruction.

 Atomicity: a guarantee that the code will not be 
interrupted.

14

Friday, November 18, 2011



Terminology

“Critical section”
 A section of code that should not be interrupted
 Should be executed as if it is a single statement

“Atomic” and “Atomicity”
 Atomic: cannot be broken down into further pieces
 Atomic (when applied to code): cannot be interrupted, like 
a single hardware instruction.

 Atomicity: a guarantee that the code will not be 
interrupted.

Critical sections need to have atomicity.

14

Friday, November 18, 2011



Protecting shared state with shared state

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

Convention and shared rules for signals protect shared state.

15

Friday, November 18, 2011



Protecting shared state with shared state

Use shared state to store signals

Signals can indicate:
 A variable is in use
 A step is complete (or not)
 How many threads are using a resource
 Whether or not a condition is true

Signals:
 Locks or mutexes (mutual exclusions)
 Semaphores
 Conditions

Don’t physically protect shared state

Convention and shared rules for signals protect shared state.
 Like traffic signals “protect” an intersection
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 “set” the signal. 
  No other threads will be able to acquire()
  They will automatically wait until ... 

release()
 “unset” a signal.
  Any one thread that was waiting for acquire() will now 
succeed
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def make_withdraw(balance)
        balance_lock = Lock()
        def withdraw(amount):
            nonlocal balance
            # try to acquire the lock
            balance_lock.acquire()
            # once successful, enter the critical section
            if amount > balance:
                print("Insufficient funds")
            else:
                balance = balance - amount
                print(balance)
            # upon exiting the critical section, release the lock
            balance_lock.release()
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def make_withdraw(balance)
        balance_lock = Lock()
        def withdraw(amount):
            nonlocal balance
            # try to acquire the lock
            balance_lock.acquire()
            # once successful, enter the critical section
            if amount > balance:
                print("Insufficient funds")
            else:
                balance = balance - amount
                print(balance)
            # upon exiting the critical section, release the lock
            balance_lock.release()

No two processes can be in the critical section at the same 
time.

Whichever gets to balance_lock.acquire() first gets to finish.

All others have to wait until it’s finished.

important, allows others 
to proceed

remember: always 
release your locks.
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Semaphores
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Semaphores

Used to protect access to limited resources

Each has a limit, N

Can be acquire()’d  N times

After that, processes trying to acquire() automatically wait

Until another process release()’s

22
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Example: database
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     db_semaphore = Semaphore(2) 

     def insert(data):
         db_semaphore.acquire() 
         database.insert(data) 
         db_semaphore.release()
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Conditions

Conditions are signals used to coordinate multiple processes

Processes can wait() on a condition

Other processes can notify() processes waiting for a 
condition.

25
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A = B+C
V = MxA
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A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
  A[index] = B[index] + C[index]
  start_step2.acquire()
  step1_finished += 1
  if(step1_finished == 2):
        start_step2.notifyAll()
  start_step2.release()

def do_step_2(index):
        start_step2.wait()
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A = B+C
V = MxA

step1_finished = 0
start_step2 = Condition()

def do_step_1(index):
  A[index] = B[index] + C[index]
  start_step2.acquire()
  step1_finished += 1
  if(step1_finished == 2):
        start_step2.notifyAll()
  start_step2.release()

def do_step_2(index):
        start_step2.wait()
        V[index] = M[index] . A
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A condition in which threads are stuck waiting for each other 
forever
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   def anti_compute():
        y_lock.acquire()
        x_lock.acquire()
        y = y - x
        x = sqrt(x)
        x_lock.release()
        y_lock.release()
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