
61A Lecture 35

Monday, 28th November, 2011

Last time: sequential data and iterators

Sequences
! The sequence abstraction so far

!Length
!Element selection

• Lists and tuples
!Store all elements up-front
!can’t deal with huge data
!can’t deal with infinite sequences

Iterators
! Store how to compute elements
! Compute one element at a time
! Delay evaluation

2

Last time: sequential data and iterators

Streams -- a unit of delayed evaluation.
! 2 elements, first and rest.

!“first” is stored
!“compute_rest” is stored
!calculate “rest” on demand

Native python iterator interface
! __iter__()
! __next__()
! for-loops rely on these methods

Generator functions
! Functions that use yield to output values
! Creates a generator object
! __iter__() and __next__() automatically defined

3

Today: modularity, processing pipelines, and
coroutines

Modularity in programs so far
! Helper functions a.k.a “subroutines”

Coroutines: what are they?

Coroutines in python

Types of coroutines

Multitasking

4

Modularity so far: helper functions

5

Main function

subroutine

subroutine

subroutine

subroutine

subroutine

Modularity in programming?
! Helper functions!

• a.k.a. “subroutines”
! A sub-program responsible for a
small piece of computation

A main function is
responsible for calling all

the subroutines

Modularity with Coroutines

Coroutines are also sub-computations

The difference: no main function

Separate coroutines link together to form a complete pipeline

6

coroutine coroutine

coroutine

coroutine

coroutine

Coroutines vs. subroutines: a conceptual difference

7

coroutine coroutine

coroutine

coroutine

coroutine

Main function

subroutine

subroutine

subroutine

subroutine

subroutine

subordinate to a main function

colleagues that cooperate

Coroutines in python, or, the many faces of “yield”

Previously: generator functions
! Produce data with yield

8

def letters_generator():
 current = 'a'
 while current <= 'd':
 yield current
 current = chr(ord(current)+1)

pauses execution
local variables preserved
resumes when .__next__ is called
returns the yielded value

Now: coroutines
! Consume data with yield

value = (yield)

pauses execution
local variables preserved
resumes when .send(data) is called
assigns value to yielded data

send(data)

value = (yield)

(yield) returns the sent data.
Execution resumes

Coroutines in Python

Consuming data with yield:
! value = (yield)
! Execution pauses waiting for data to be sent

Send a coroutine data using send(...)

Start a coroutine using ___next__()

Signal the end of a computation using close()
• Raises GeneratorExit exception inside coroutine

9

Example: print out strings that match a pattern

10

def match(pattern):
 print('Looking for ' + pattern)
 try:
 while True:
 s = (yield)
 if pattern in s:
 print(s)
 except GeneratorExit:
 print("=== Done ===")

Step 2: Start with __next__()
>>> m.__next__()

Step 3: Send data
>>> m.send(“the Jabberwock with eyes of flame”)

Step 1: Initialize
>>> m = match(“Jabberwock”)

does nothing
creates a new object

stops here, waiting
for data

execution starts

‘Looking for Jabberwock’

resumes here
s = “the Jabberwock ...”

match found

‘the Jabberwock with eyes of flame’
Step 4: close the coroutine
>>> m.close()

catch exception

‘=== Done ===’

Pipelines: the power of coroutines

11

coroutine coroutine

coroutine

coroutine

coroutine

We can chain coroutines together to achieve complex behaviors
Create a pipeline

Coroutines send data to others downstream

A simple pipeline

12

match
words

read
words

A simple pipeline: reading words

13

match
words

read
words

match
words

read
words

 def read(text, next_coroutine):
 for word in text.split():
 next_coroutine.send(word)
 next_coroutine.close()

needs to know where to send()

loop

(yield) -- wait for next send

for loop for word in text.split():
 next_coroutine.send(word)

read

value = (yield)

next_coroutine

send -- activate (yield)

while True:
line = (yield)
if pattern in line:
print(line)

match

14

while loop

(yield) -- wait for next send

for loop for word in text.split():
 next_coroutine.send(word)

read

send -- activate (yield)

match
words

read
words

A simple pipeline

A simple pipeline

15

matcher
‘ending’

read
text = ‘Comm

>>> matcher = match('ending')
>>> matcher.__next__()
‘Looking for ending’

line = (yield)
paused

>>> text = 'Commending spending is offending to people pending lending!'
>>> read(text, matcher)

for word in text.split():
 next_coroutine.send(word)

Commending Commending

‘Commending’

spending spendingis is
offending

offending

‘spending’
‘offending’
‘pending’
‘lending!’

next_coroutine.close()

pausedpausedpaused

‘=== Done ===’

closed

GeneratorExit

last word!

Produce, Filter, Consume

16

producer

send

filter

(yield)

send

... filter

(yield)

send

consumer

(yield)

Coroutines can have different roles in a pipeline
Based on how they use send() and yield

The producer
only sends data

The filter
consumes with (yield)
and sends results
downstream

The consumer
only consumes data

There can be many
layers of filters

17

read
text = ‘Comm

Example: simple pipeline

 def read(text, next_coroutine):
 for word in text.split():
 next_coroutine.send(word)
 next_coroutine.close()

matcher
‘ending’

def match(pattern):
 print('Looking for ' + pattern)
 try:
 while True:
 s = (yield)
 if pattern in s:
 print(s)
 except GeneratorExit:
 print("=== Done ===")

Producer Consumer

Breaking down match

18

match wordsread words

Producer Consumer

printfind matches

filter consumer

Breaking down match

19

printfind matches

filter consumer
 def match_filter(pattern, next_coroutine):
 print('Looking for ' + pattern)
 try:
 while True:
 s = (yield)
 if pattern in s:
 next_coroutine.send(s)
 except GeneratorExit:
 next_coroutine.close()

 def print_consumer():
 print('Preparing to print')
 try:
 while True:
 line = (yield)
 print(line)
 except GeneratorExit:
 print("=== Done ===")

>>> printer = print_consumer()
>>> printer.__next__()
‘Preparing to print’
>>> matcher = match_filter('pend', printer)
>>> matcher.__next__()
‘Looking for pend’
>>> text = 'Commending spending is offending'
>>> read(text, matcher)
‘spending’
‘=== Done ===’

Multitasking

20

coroutine coroutine

coroutine

coroutine

coroutine

We do not need to be restricted to just one next step

Read-to-many

21

 def read_to_many(text, coroutines):
 for word in text.split():
 for coroutine in coroutines:
 coroutine.send(word)
 for coroutine in coroutines:
 coroutine.close()

 def read(text, next_coroutine):
 for word in text.split():
 next_coroutine.send(word)
 next_coroutine.close()

coroutineread

coroutine

read_to_many

coroutine

Matching multiple patterns

22

match
‘pe’

read_to_many

match
‘mend’

print

>>> printer = print_consumer()
>>> printer.__next__()
‘Preparing to print’
>>> m = match_filter('mend', printer)
>>> m.__next__()
‘Looking for mend’
>>> p = match_filter("pe", printer)
>>> p.__next__()
‘Looking for pe’
>>> read_to_many(text, [m, p])
‘Commending’
‘spending’
‘people’
‘pending’
‘=== Done ===’

Any questions?

NEXT TIME

MAP REDUCE
http://www.infobarrel.com/Top_10_Tips_For_Snowboard_Beginners

