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The big ideas that underly MapReduce:

• Datasets are too big to be stored or analyzed on one machine

• When using multiple machines, systems issues abound
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Below-the-Line: Parallel Execution
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A "task" is a 
Unix process 
running on a 

machine

Map phase
Reduce phase

Shuffle
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#!/usr/bin/env python3

import sys
from ucb import main
from mr import emit

@main
def run():
    for line in sys.stdin:
        emit_vowels(line)

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)

Mapper

The emit function outputs a 
key and value as a line of 
text to standard output

Mapper inputs are 
lines of text provided 

to standard input

Tell Unix: this is Python
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Python Examples of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• Read from standard input and write to standard output!

12

#!/usr/bin/env python3

import sys
from ucb import main
from mr import emit, values_by_key

Reducer

@main
def run():
    for key, value_iterator in values_by_key(sys.stdin):
        emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value 
pairs, grouped by key
Output: Iterator over (key, value_iterator) 
pairs that give all values for each key
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Fault tolerance: A machine or hard drive might crash
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded
• The framework can run multiple copies of a task and keep the 
result of the one that finishes first.

Network locality: Data transfer is expensive
• The framework tries to schedule map tasks on the machines 
that hold the data to be processed.

Monitoring: Will my job finish before dinner?!?
• The framework provides a web-based interface describing jobs.
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