
User Guide [optional]

UG175 April 24, 2012 [optional]

LogiCORE IP FIFO
Generator v9.1

User Guide

UG175 April 24, 2012

FIFO Generator v9.1 www.xilinx.com UG175 April 24, 2012

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To
the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to
you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

© 2005–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/28/05 1.1 Initial Xilinx release.

8/31/05 2.0 Updated guide for release v2.2, added SP3 to ISE v7.1i, incorporated edits from
engineering specific for this release, including FWFT, and Built-in FIFO flags, etc.

1/11/06 3.0 Updated for v2.3 release, ISE v8.1i.

7/13/06 4.0 Added Virtex-5 support, reorganized Chapter 5, added ISE v8.2i, version to 3.1

9/21/06 5.0 Core version updated to v3.2; support added for Spartan-3A.

2/15/07 6.0 Core version updated to 3.3; Xilinx tools updated to 9.1i.

4/02/07 6.5 Added support for Spartan-3A DSP devices.

8/8/07 6.6 Updated core to v4.1, ISE tools 9.2i, Cadence IUS v5.8.

10/10/07 7.0 Updated core to v4.2, IUS to v6.1, Xilinx trademark references.

3/24/08 8.0 Updated core to v4.3, ISE tools 10.1, Mentor Graphics® ModelSim® v6.3c.

9/19/08 9.0 Updated core to v4.4, ISE tools 10.1, SP3.

12/17/08 9.0.1 Early access documentation.

4/24/09 10.0 Updated core to v5.1, and ISE tools to v11.1.

6/24/09 10.5 Updated core to v5.2 and ISE tools to v11.2.

6/24/09 10.6 Updated Appendix A, “Performance Information.”

9/16/09 11.0 Updated core to v5.3 and ISE tools to v11.3.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

UG175 April 24, 2012 www.xilinx.com FIFO Generator v9.1

4/19/10 12.0 Updated core to v6.1 and ISE tools to v12.1.

7/23/10 13.0 Updated core to v6.2 and ISE tools to v12.2.

9/21/10 14.0 Updated core to v7.2 and ISE tools to v12.3. Added AXI4 Interface support.

3/1/11 15.0 Updated core to v8.1 and ISE tools to v13.1.

6/22/11 16.0 Updated core to v8.2 and ISE Design Suite to v13.2.

10/19/11 17.0 Updated core to v8.3 and ISE Design Suite to v13.3.

1/18/12 18.0 Updated core to v8.4 and ISE Design Suite to v13.4.

4/24/12 19.0 Updated core to v9.1 and ISE Design Suite to v14.1. Removed Almost Full and
Almost Empty FIFO options. Added details about Programmable Flags in
Chapter 4.

Date Version Revision

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 5
UG175 April 24, 2012

Revision History . 2

Preface: About This Guide
Guide Contents . 19
Additional Resources . 19
Conventions . 20

Typographical . 20
Online Document . 21

Chapter 1: Introduction
About the Core . 23
Recommended Design Experience . 23
Technical Support. 24
Feedback. 24

FIFO Generator . 24
Document . 24

Chapter 2: Core Overview
Native Interface FIFOs . 25

Native FIFO Feature Overview . 26
Clock Implementation and Operation . 26
Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-in FIFO Support 26
Virtex-4 FPGA Built-in FIFO Support . 26
First-Word Fall-Through. 26
Supported Memory Types . 26
Non-Symmetric Aspect Ratio Support . 27
Embedded Registers in Block RAM and FIFO Macros . 27
Error Injection and Correction (ECC) Support . 27

Native FIFO Core Configuration and Implementation . 28
Common Clock: Block RAM, Distributed RAM, Shift Register 28
Common Clock: Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA Built-in FIFO . 28
Independent Clocks: Block RAM and Distributed RAM . 29
Independent Clocks: Built-in FIFO for Kintex-7, Virtex-7, Virtex-6, Virtex-5 or

Virtex-4 FPGAs. 29
Native FIFO Generator Feature Summary . 29
Using Block RAM FIFOs Versus Built-in FIFOs . 30
Native FIFO Interface Signals . 31

Interface Signals: FIFOs With Independent Clocks. 31
Interface Signals: FIFOs with Common Clock . 35

AXI4 Interface FIFOs . 38
AXI4 FIFOs Feature Overview . 39

Easy Integration of Independent FIFOs for Read and Write Channels 39
Clock and Reset Implementation and Operation . 40
Automatic FIFO Width Calculation . 40

Table of Contents

http://www.xilinx.com

6 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Supported Memory Types . 41
Packet FIFO. 41
Error Injection and Correction (ECC) Support . 41
AXI4 Slave Interface for Performing Writes . 42
AXI4 Master Interface for Performing Reads . 42

AXI4 FIFOs Feature Summary . 42
AXI4 FIFOs Interface Signals . 42

Global Signals . 42
AXI4-Stream FIFO Interface Signals . 43
AXI4 FIFO Interface Signals . 46
AXI4-Lite FIFO Interface Signals . 59

Chapter 3: Generating the Native FIFO Core
CORE Generator Graphical User Interface . 71
Interface Type . 72

Component Name . 72
Interface Type . 72

FIFO Implementation . 73
Common Clock (CLK), Block RAM . 74
Common Clock (CLK), Distributed RAM. 74
Common Clock (CLK), Shift Register . 74
Common Clock (CLK), Built-in FIFO . 74
Independent Clocks (RD_CLK, WR_CLK), Block RAM . 74
Independent Clocks (RD_CLK, WR_CLK), Distributed RAM . 74
Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO. 74

Performance Options and Data Port Parameters. 75
Read Mode . 75

Standard FIFO. 75
First-Word Fall-Through FIFO . 75

Built-in FIFO Options . 76
Read/Write Clock Frequencies. 76

Data Port Parameters . 76
Write Width . 76
Write Depth . 76
Read Width . 76
Read Depth . 76

Implementation Options . 76
Error Correction Checking in Block RAM or Built-in FIFO . 76
Use Embedded Registers in Block RAM or FIFO . 76

Optional Flags, Handshaking, and Initialization . 77
Optional Flags. 77

Almost Full Flag . 78
Almost Empty Flag . 78

Handshaking Options . 78
Write Port Handshaking. 78
Read Port Handshaking . 78

Error Injection . 78
Single Bit Error Injection . 78
Double Bit Error Injection . 78

Initialization and Programmable Flags . 79
Initialization . 80

Reset Pin . 80

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 7
UG175 April 24, 2012

Use Dout Reset . 80
Programmable Flags . 80

Programmable Full Type . 80
Programmable Empty Type . 81

Data Count. 82
Data Count Options . 82

Use Extra Logic For More Accurate Data Counts . 82
Data Count (Synchronized With Clk) . 82
Write Data Count (Synchronized with Write Clk) . 83
Read Data Count (Synchronized with Read Clk) . 83

Summary . 84

Chapter 4: Generating the AXI4 FIFO Core
CORE Generator Graphical User Interface . 85

AXI4 Interface Selection . 86
AXI4 Interface Options . 86
Clocking Options . 86

Width Calculation . 87
AXI4-Stream Width Calculation . 88
AXI4 Width Calculation . 89
AXI4-Lite Width Calculation . 91

Default Settings . 92
FIFO Configurations . 93

Memory Types . 93
Error Injection and Correction (ECC) . 94
FIFO Width . 94
FIFO Depth . 94

Programmable Flags . 94
Programmable Full Type . 94
Full Threshold Assert Value . 94
Programmable Empty Type . 94
Empty Threshold Assert Value. 94

Data Threshold Parameters . 94
Occupancy Data Counts . 94

Common Configurations . 95
Interrupt Flags . 95

Summary . 96
AXI4-Stream Summary . 97
AXI4 and AXI4-Lite Summary . 98

Chapter 5: Designing with the Core
General Design Guideline . 99

Know the Degree of Difficulty . 99
Understand Signal Pipelining and Synchronization . 99

Synchronization Considerations . 99
Initializing the FIFO Generator. 100
FIFO Implementations . 101

Independent Clocks: Block RAM and Distributed RAM . 101
Independent Clocks: Built-in FIFO . 103
Common Clock: Built-in FIFO . 105

http://www.xilinx.com

8 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Common Clock FIFO: Block RAM and Distributed RAM . 105
Common Clock FIFO: Shift Registers . 106

FIFO Usage and Control . 106
Write Operation . 106

ALMOST_FULL and FULL Flags . 106
Example Operation . 107

Read Operation . 107
ALMOST_EMPTY and EMPTY Flags . 107
Modes of Read Operation . 108

Handshaking Flags . 110
Write Acknowledge . 110
Valid . 110
Example Operation . 111
Underflow. 112
Overflow. 113
Example Operation . 113

Programmable Flags . 113
Programmable Full . 114
Programmable Empty. 116

Data Counts . 119
Data Count (Common Clock FIFO Only) . 119
Read Data Count (Independent Clock FIFO Only) . 119
Write Data Count (Independent Clock FIFO Only) . 120
First-Word Fall-Through Data Count . 120
Example Operation . 122

Non-symmetric Aspect Ratios . 123
Non-symmetric Aspect Ratio and First-Word Fall-Through . 125

Embedded Registers in Block RAM and FIFO Macros
(Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs) 126

Standard FIFOs . 126
Block RAM Based FWFT FIFOs . 127
Built-in Based FWFT FIFOs (Common Clock Only) . 127

Built-in Error Correction Checking . 127
Built-in Error Injection. 129
Reset Behavior . 129

Asynchronous Reset (Enable Reset Synchronization Option is Selected) 130
Synchronous Reset . 133

Actual FIFO Depth . 137
Block RAM, Distributed RAM and Shift RAM FIFOs . 137
Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-In FIFOs 138
Virtex-4 FPGA Built-In FIFOs . 138

Latency . 139
Non-Built-in FIFOs: Common Clock and Standard Read Mode Implementations . 139
Non-Built-in FIFOs: Common Clock and FWFT Read Mode Implementations . . . 140
Non-Built-in FIFOs: Independent Clock and Standard Read Mode

Implementations . 142
Non-Built-in FIFOs: Independent Clock and FWFT Read Mode Implementations 143
Built-in FIFOs: Common Clock and Standard Read Mode Implementations 145
Built-in FIFOs: Common Clock and FWFT Read Mode Implementations 146
Built-in FIFOs: Independent Clocks and Standard Read Mode Implementations. . 147
Built-in FIFOs: Independent Clocks and FWFT Read Mode Implementations 149
Virtex-4 FPGA Built-in FIFO . 150

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 9
UG175 April 24, 2012

Chapter 6: Special Design Considerations
Resetting the FIFO . 151
Continuous Clocks . 151
Pessimistic Full and Empty . 151
Programmable Full and Empty . 152
Simultaneous Assertion of Full and Empty Flag . 152
Write Data Count and Read Data Count . 153
Setup and Hold Time Violations . 154

Chapter 7: Simulating Your Design
Simulation Models . 157

Behavioral Models . 157
Structural Models . 158

Chapter 8: Quick Start Example Design
Implementing the Example Design . 159
Simulating the Example Design . 160

Setting up for Simulation . 160
Functional Simulation . 160
Timing Simulation . 161

Chapter 9: Detailed Example Design
Directory and File Contents . 164

<project_directory> . 164
<project_directory>/<component_name> . 164
<component_name>/example design . 164
<component_name>/implement . 165
<component_name>/implement/results . 165
<component_name>/simulation. 166
simulation/functional . 166
simulation/timing . 167

Implementation Scripts . 168
Simulation Scripts . 168

Functional Simulation . 169
Timing Simulation . 169

Example Design Configuration . 169
Demonstration Test Bench . 170

Test Bench Functionality . 170
Core with Native Interface . 170
Core with AXI4 Interface . 171

Customizing the Demonstration Test Bench . 171
Changing the Data/Stimulus . 171
Changing the Test Bench Run Time . 171

Chapter 10: Migrating to the Latest Version
Migrating Older Versions to the Most Recent Version . 173

Differences between Cores . 173

http://www.xilinx.com

10 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Migrating a Design . 173
Migration Script . 173
Manual Migration Process . 175
Modifying the Instantiations of the Old Core . 178

Converting Native Interface FIFOs to AXI4 Interface FIFOs 180
Component Name and FIFO Implementation Selection . 180
Read Mode and Data Port Parameters Selection . 182
Optional Flags and Error Injection Selection . 184
Initialization and Programmable Options Selection . 185

Native FIFO to AXI4-Stream FIFO XCO Parameter Map . 187

Appendix A: Performance Information
Resource Utilization and Performance . 191

Appendix B: Core Parameters
Native Interface FIFO XCO Parameters . 193
AXI4 FIFO XCO Parameters . 195
Comparison of Native and AXI4 FIFO XCO Parameters . 200

Appendix C: DOUT Reset Value Timing

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 19
UG175 April 24, 2012

Preface

About This Guide

The LogicCORE™ IP FIFO Generator User Guide describes the function and operation of the
FIFO Generator, as well as information about designing, customizing, and implementing
the core.

Guide Contents
The following chapters are included:

• “Preface, About this Guide” describes how the user guide is organized and the
conventions used in this guide.

• Chapter 1, “Introduction,” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Core Overview,” describes the core configuration options and their
interfaces.

• Chapter 3, “Generating the Native FIFO Core,” describes how to generate the Native
interface core using the Xilinx CORE Generator™ Graphical User Interface (GUI).

• Chapter 4, “Generating the AXI4 FIFO Core,” describes how to generate the AXI4
interface FIFO core using the Xilinx CORE GUI.

• Chapter 5, “Designing with the Core,” discusses how to use the core in a user
application.

• Chapter 6, “Special Design Considerations,” discusses specific design features that
must be considered when designing with the core.

• Chapter 7, “Simulating Your Design,” provides instructions for simulating the design
with either behavioral or structural simulation models.

• Appendix A, “Performance Information,” provides a summary of the core’s
performance data.

• Appendix B, “Core Parameters,” provides a comprehensive list of the parameters set
by the CORE Generator GUI for the FIFO Generator.

• Appendix C, “DOUT Reset Value Timing,” provides the timing diagram for DOUT
reset value for various FIFO configurations.

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm

20 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Preface: About This Guide

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support/mysupport.htm.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices lowpwr ={on|off}

Angle brackets < >
User-defined variable or in code
samples <directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 21
UG175 April 24, 2012

Online Document
The following conventions are used in this document:

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low

usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

22 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Preface: About This Guide

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 23
UG175 April 24, 2012

Chapter 1

Introduction

The FIFO Generator core is a fully verified first-in first-out memory queue for use in any
application requiring in-order storage and retrieval, enabling high-performance and area-
optimized designs. The core provides an optimized solution for all FIFO configurations
and delivers maximum performance (up to 500 MHz) while utilizing minimum resources.

The Xilinx FIFO Generator core supports Native interface FIFOs and AXI4 Interface FIFOs.
Native interface FIFO Generators (FIFOs) are the original standard FIFO functions
delivered by the previous versions of the FIFO Generator (up to v6.2). AXI4 Interface
FIFOs are derived from the Native interface FIFO. Three AXI4 interface styles are
available: AXI4-Stream, AXI4 and AXI4-Lite.

This core can be customized using the Xilinx CORE Generator system as a complete
solution with control logic already implemented, including management of the read and
write pointers and the generation of status flags.

This chapter introduces the FIFO Generator and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

About the Core
The FIFO Generator is a CORE Generator IP core, included with the latest ISE® Design
Suite release in the Xilinx Download Center. The core licensed under the terms of the Xilinx
End User License and no FLEX license key is required. For detailed information about the
core, see the FIFO Generator product page.

For a list of system requirements, see the ISE Design Suite 13: Release Notes Guide.

Recommended Design Experience
The FIFO Generator is a fully verified solution, and can be used by all levels of design
engineers.

Important: When implementing a FIFO with independent write and read clocks, special
care must be taken to ensure the FIFO Generator is correctly used. Synchronization
Considerations, page 99 provides important information to help ensure correct design
configuration.

Similarly, asynchronous designs should also be aware that the behavioral models do not
model synchronization delays. See Chapter 7, Simulating Your Design for details.

http://www.xilinx.com/products/ipcenter/FIFO_Generator.htm
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

24 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Technical Support
For technical support, visit www.support.xilinx.com/. Questions are routed to a team of
engineers with FIFO Generator expertise.

Xilinx will provide technical support for use of this product as described in the LogiCORE
FIFO Generator User Guide. Xilinx cannot guarantee timing, functionality, or support of this
product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the FIFO Generator and the
documentation supplied with the core.

FIFO Generator
For comments or suggestions about the FIFO Generator, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://support.xilinx.com/
http://support.xilinx.com/

FIFO Generator v9.1 www.xilinx.com 25
UG175 April 24, 2012

Chapter 2

Core Overview

The FIFO Generator core supports the generation of Native interface FIFOs and AXI4
Interface FIFOs. Native interface FIFO Generators (“FIFOs”) are the original standard FIFO
functions delivered by the previous versions of the LogiCORE FIFO Generator (up to
Version 6.2). Native interface FIFO Generators are optimized for buffering, data-width
conversion and clock domain de-coupling applications, providing in-order storage and
retrieval.

AXI4 Interface FIFOs are derived from the Native interface FIFOs. Three AXI4 interface
styles are available: AXI4-Stream, AXI4 and AXI4-Lite.

Native Interface FIFOs
The Native interface FIFO can be customized to utilize block RAM, distributed RAM or
built-in FIFO FPGA resources available in some FPGA families to create high-
performance, area-optimized FPGA designs.

Standard mode and First Word Fall Through are the two operating modes available for
Native interface FIFOs.
X-Ref Target - Figure 2-1

Figure 2-1: Native Interface FIFOs Signal Diagram

DOUT[M:0]

EMPTY

RD_EN

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

ALMOST_FULL

PROG_FULL

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

PROG_EMPTY_THRESH

RD_DATA_COUNT[Q:0]

SBITERR

DBITERR

WR_ACK

OVERFLOW

WR_DATA_COUNT[P:0]

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

PROG_FULL_THRESH

INJECTSBITERR

INJECTDBITERR

WR_RST RST RD_RST

OPTIONAL

MANDATORY

OPTIONAL SIDEBAND

WR_CLK RD_CLK

Read AgentWrite Agent

http://www.xilinx.com

26 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Native FIFO Feature Overview

Clock Implementation and Operation

The FIFO Generator can configure FIFOs with either independent or common clock
domains for write and read operations. The independent clock configuration of the FIFO
Generator enables the user to implement unique clock domains on the write and read
ports. The FIFO Generator handles the synchronization between clock domains, placing no
requirements on phase and frequency relationships between clocks. A common clock
domain implementation optimizes the core for data buffering within a single clock
domain.

Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-in FIFO Support

The FIFO Generator supports the Virtex®-6 and Virtex-5 FPGA built-in FIFO modules,
enabling the creation of large FIFOs by cascading the built-in FIFOs in both width and
depth. The core expands the capabilities of the built-in FIFOs by utilizing the FPGA fabric
to create optional status flags not implemented in the built-in FIFO macro. The built-in
Error Injection and Correction Checking (ECC) feature in the built-in FIFO macro is also
available.

Virtex-4 FPGA Built-in FIFO Support

The FIFO Generator supports a single instantiation of the Virtex-4 FPGA built-in FIFO
module. The core also implements a FIFO flag patch (“Solution 1:
Synchronous/Asynchronous Clock Work-Arounds,” defined in the Virtex-4 FPGA User
Guide), based on estimated clock frequencies. This patch is implemented in fabric. See
Appendix A, Performance Information for resource utilization estimates.

First-Word Fall-Through

The first-word fall-through (FWFT) feature provides the ability to look ahead to the next
word available from the FIFO without having to issue a read operation. The FIFO
accomplishes this by using output registers which are automatically loaded with data,
when data appears in the FIFO. This causes the first word written to the FIFO to
automatically appear on the data out bus (DOUT). Subsequent user read operations cause
the output data to update with the next word, as long as data is available in the FIFO. The
use of registers on the FIFO DOUT bus improves clock-to-output timing, and the FWFT
functionality provides low-latency access to data. This is ideal for applications that require
throttling, based on the contents of the data that are read.

See Table 2-2 for FWFT availability. The use of this feature impacts the behavior of many
other features, such as:

• Read operations (see First-Word Fall-Through FIFO Read Operation, page 109)

• Programmable empty (see Non-symmetric Aspect Ratio and First-Word Fall-
Through, page 125)

• Data counts (see First-Word Fall-Through Data Count, page 120 and Non-symmetric
Aspect Ratio and First-Word Fall-Through, page 125)

Supported Memory Types

The FIFO Generator implements FIFOs built from block RAM, distributed RAM, shift
registers, or the built-in FIFOs for Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs.
The core combines memory primitives in an optimal configuration based on the selected

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 27
UG175 April 24, 2012

width and depth of the FIFO. Table 2-1 provides best-use recommendations for specific
design requirements.

Non-Symmetric Aspect Ratio Support

The core supports generating FIFOs whose write and read ports have different widths,
enabling automatic width conversion of the data width. Non-symmetric aspect ratios
ranging from 1:8 to 8:1 are supported for the write and read port widths. This feature is
available for FIFOs implemented with block RAM that are configured to have independent
write and read clocks.

Embedded Registers in Block RAM and FIFO Macros

In Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA block RAM and FIFO macros and Virtex-
4 FPGA block RAM macros, embedded output registers are available to increase
performance and add a pipeline register to the macros. This feature can be leveraged to
add one additional latency to the FIFO core (DOUT bus and VALID outputs) or implement
the output registers for FWFT FIFOs. The embedded registers available in Kintex-7, Virtex-
7, and Virtex-6 FPGAs can be reset (DOUT) to a default or user programmed value for
common clock built-in FIFOs. See Embedded Registers in Block RAM and FIFO Macros
(Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs), page 126 for more information.

Error Injection and Correction (ECC) Support

The block RAM and FIFO macros are equipped with built-in Error Correction Checking
(ECC) in the Virtex-5 FPGA architecture and built-in Error Injection and Correction
Checking in the Kintex-7, Virtex-7, and Virtex-6 FPGA architectures. Error Injection and
Correction are available for both the common and independent clock block RAM or built-
in based FIFOs.

Table 2-1: Memory Configuration Benefits

Independent
Clocks

Common
Clock

Small
Buffering

Medium-
Large

Buffering

High
Performance

Minimal
Resources

Built-in
FIFO

Block RAM

Shift
Register

Distributed
RAM

http://www.xilinx.com

28 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Native FIFO Core Configuration and Implementation
Table 2-2 provides a summary of the supported memory and clock configurations.

Common Clock: Block RAM, Distributed RAM, Shift Register

This implementation category allows the user to select block RAM, distributed RAM, or
shift register and supports a common clock for write and read data accesses.

The feature set supported for this configuration includes status flags (full, almost full,
empty, and almost empty) and programmable empty and full flags generated with user-
defined thresholds. In addition, optional handshaking and error flags are supported (write
acknowledge, overflow, valid, and underflow), and an optional data count provides the
number of words in the FIFO. In addition, for the block RAM and distributed RAM
implementations, the user has the option to select a synchronous or asynchronous reset for
the core. For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA designs, the block RAM FIFO
configuration also supports ECC.

Common Clock: Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA Built-
in FIFO

This implementation category allows the user to select the built-in FIFO available in the
Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA architectures and supports a
common clock for write and read data accesses.

The feature set supported for this configuration includes status flags (full and empty) and
optional programmable full and empty flags with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid,

Table 2-2: FIFO Configurations

Clock Domain Memory Type

Non-
symmetric

Aspect
Ratios

First-Word
Fall-

Through

ECC
Support

Embedded
Register
Support

Error
Injection

Reset Option for
Embedded Register
(with/without DOUT

Reset Value)a

Common Block RAM b

Common Distributed
RAM

Common Shift Register

Common Built-in FIFOc d e

Independent Block RAM b

Independent Distributed
RAM

Independent Built-in FIFOc d f

a. Available only if Embedded register option is selected.
b. Embedded register support is only available for Kintex-7, Virtex-7, Virtex-6, Virtex-4, and Virtex-5 FPGA block RAM-based FIFOs.
c. The built-in FIFO primitive is only available in the Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 architectures.
d. FWFT is only supported for built-in FIFOs in Kintex-7, Virtex-7, Virtex-6 and Virtex-5 devices.
e. Only available for Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA common clock built-in FIFOs.
f. Available only if ECC option is selected.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 29
UG175 April 24, 2012

and underflow). The Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO
configurations also support the built-in ECC feature.

Independent Clocks: Block RAM and Distributed RAM

This implementation category allows the user to select block RAM or distributed RAM and
supports independent clock domains for write and read data accesses. Operations in the
read domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this type of FIFO includes non-symmetric aspect ratios
(different write and read port widths), status flags (full, almost full, empty, and almost
empty), as well as programmable full and empty flags generated with user-defined
thresholds. Optional read data count and write data count indicators provide the number
of words in the FIFO relative to their respective clock domains. In addition, optional
handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow). For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA designs, the block RAM
FIFO configuration also supports ECC.

Independent Clocks: Built-in FIFO for Kintex-7, Virtex-7, Virtex-6, Virtex-5 or
Virtex-4 FPGAs

This implementation category allows the user to select the built-in FIFO available in the
Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA architectures. Operations in the read
domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this configuration includes status flags (full and empty) and
programmable full and empty flags generated with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid,
and underflow). The Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO
configurations also support the built-in ECC feature.

Native FIFO Generator Feature Summary
Table 2-3 summarizes the FIFO Generator features supported for each clock configuration
and memory type.

Table 2-3: FIFO Configurations Summary

FIFO Feature

Independent Clocks Common Clock

Block RAM
Distributed

RAM
 Built-in
FIFOa Block RAM

Distributed
RAM, Shift
Register

 Built-in
FIFOa

Non-symmetric
Aspect Ratiosb

Symmetric Aspect
Ratios

Almost Full
Almost Empty
Handshaking
Data Count

http://www.xilinx.com

30 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Using Block RAM FIFOs Versus Built-in FIFOs
The Built-In FIFO solutions were implemented to take advantage of logic internal to the
Built-in FIFO macro. Several features, for example, non-symmetric aspect ratios, almost
full, almost empty, and so forth were not implemented because they are not native to the
macro and require additional logic in the fabric to implement.

Benchmarking suggests that the advantages the Built-In FIFO implementations have over
the block RAM FIFOs (for example, logic resources) diminish as external logic is added to
implement features not native to the macro. This is especially true as the depth of the
implemented FIFO increases. It is strongly recommended that users requiring features not
available in the Built-In FIFOs implement their design using block RAM FIFOs.

Programmable
Empty/Full
Thresholds

 c c

First-Word Fall-
Through

 d e d

Synchronous
Reset

Asynchronous
Reset f f f f

DOUT Reset
Value

 g

ECC i h i i

Embedded
Register

i j j

a. For Virtex-4 FPGA Built-in FIFO macro, the valid width range is 4, 9, 18 and 36 and the valid depth
range automatically varies based on write width selection. For Kintex-7, Virtex-7, Virtex-6 and
Virtex-5 FPGA Built-in FIFO macros, the valid width range is 1 to 1024 and the valid depth range is 512
to 4194304. Only depths with powers of 2 are allowed.

b. For applications with a single clock that require non-symmetric ports, use the independent clock
configuration and connect the write and read clocks to the same source. A dedicated solution for
common clocks will be available in a future release. Contact your Xilinx representative for more details.

c. For built-in FIFOs, the range of Programmable Empty/Full threshold is limited to take advantage of
the logic internal to the macro.

d. First-Word-Fall-Through is only supported for the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-
in FIFOs.

e. First-Word-Fall-Through is supported for distributed RAM FIFO only.
f. Asynchronous reset is optional for all FIFOs built using distributed and block RAM.
g. DOUT reset value is supported only in Kintex-7, Virtex-7, and Virtex-6 FPGA common clock built-in

FIFOs with embedded register option selected.
h. ECC is only supported for the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA block RAM and built-in

FIFOs.
i. Embedded register option is only supported in Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGA

block RAM FIFOs.
j. Embedded register option is supported only in Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA common

clock built-in FIFOs. See Embedded Registers in Block RAM and FIFO Macros, page 27.

Table 2-3: FIFO Configurations Summary (Cont’d)

FIFO Feature

Independent Clocks Common Clock

Block RAM
Distributed

RAM
 Built-in
FIFOa Block RAM

Distributed
RAM, Shift
Register

 Built-in
FIFOa

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 31
UG175 April 24, 2012

Native FIFO Interface Signals
The following sections define the FIFO interface signals. Figure 2-2 illustrates these signals
(both standard and optional ports) for a FIFO core that supports independent write and
read clocks.

Interface Signals: FIFOs With Independent Clocks

The RST signal, as defined Table 2-4, causes a reset of the entire core logic (both write and
read clock domains. It is an asynchronous input synchronized internally in the core before
use. The initial hardware reset should be generated by the user.

X-Ref Target - Figure 2-2

Figure 2-2: FIFO with Independent Clocks: Interface Signals

Note: Optional ports represented in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

WR_RST

PROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

RD_RST

PROG_EMPTY_THRESH

Table 2-4: Reset Signal for FIFOs with Independent Clocks

Name Direction Description

RST Input Reset: An asynchronous reset signal that initializes all internal
pointers and output registers.

http://www.xilinx.com

32 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 2-5 defines the write interface signals for FIFOs with independent clocks. The write
interface signals are divided into required and optional signals and all signals are
synchronous to the write clock (WR_CLK).

Table 2-5: Write Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

WR_CLK Input Write Clock: All signals on the write domain are synchronous to this
clock.

DIN[N:0] Input Data Input: The input data bus used when writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting this signal causes data
(on DIN) to be written to the FIFO.

FULL Output Full Flag: When asserted, this signal indicates that the FIFO is full.
Write requests are ignored when the FIFO is full, initiating a write
when the FIFO is full is not destructive to the contents of the FIFO.

Optional

WR_RST Input Write Reset: Synchronous to write clock. When asserted, initializes
all internal pointers and flags of write clock domain.

ALMOST_FULL Output Almost Full: When asserted, this signal indicates that only one more
write can be performed before the FIFO is full.

PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the assert threshold. It
is deasserted when the number of words in the FIFO is less than the
negate threshold.

WR_DATA_COUNT [D:0] Output Write Data Count: This bus indicates the number of words written
into the FIFO. The count is guaranteed to never under-report the
number of words in the FIFO, to ensure the user never overflows the
FIFO. The exception to this behavior is when a write operation occurs
at the rising edge of WR_CLK, that write operation will only be
reflected on WR_DATA_COUNT at the next rising clock edge.

If D is less than log2(FIFO depth)-1, the bus is truncated by removing
the least-significant bits.

WR_ACK Output Write Acknowledge: This signal indicates that a write request
(WR_EN) during the prior clock cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write request (WR_EN) during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the contents of the FIFO.

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold to
the same value (using PROG_FULL_THRESH), or the user can
control these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 33
UG175 April 24, 2012

Table 2-6 defines the read interface signals of a FIFO with independent clocks. Read
interface signals are divided into required signals and optional signals, and all signals are
synchronous to the read clock (RD_CLK).

PROG_FULL_THRESH_ASSERT Input Programmable Full Threshold Assert: This signal is used to set the
upper threshold value for the programmable full flag, which defines
when the signal is asserted. The threshold can be dynamically set in-
circuit during reset. Refer to the FIFO Generator GUI for the valid
range of values(a).

PROG_FULL_THRESH_NEGATE Input Programmable Full Threshold Negate: This signal is used to set the
lower threshold value for the programmable full flag, which defines
when the signal is de-asserted. The threshold can be dynamically set
in-circuit during reset. Refer to FIFO Generator GUI for the valid
range of values(a).

INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a Kintex-7,
Virtex-7, and Virtex-6 FPGA block RAMs or built-in FIFO macros.

INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, and Virtex-6 FPGA block RAMs or built-in FIFO
macros.

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

Table 2-5: Write Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

Table 2-6: Read Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

RD_RST Input Read Reset: Synchronous to read clock. When asserted, initializes
all internal pointers, flags and output registers of read clock
domain.

RD_CLK Input Read Clock: All signals on the read domain are synchronous to this
clock.

DOUT[M:0] Output Data Output: The output data bus is driven when reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal causes
data to be read from the FIFO (output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates that the FIFO is
empty. Read requests are ignored when the FIFO is empty,
initiating a read while empty is not destructive to the FIFO.

Optional

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal indicates that the
FIFO is almost empty and one word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted when the number of
words in the FIFO is less than or equal to the programmable
threshold. It is de-asserted when the number of words in the FIFO
exceeds the programmable threshold.

http://www.xilinx.com

34 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

RD_DATA_COUNT [C:0] Output Read Data Count: This bus indicates the number of words available
for reading in the FIFO. The count is guaranteed to never over-
report the number of words available for reading, to ensure that the
user does not underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of RD_CLK, that
read operation is only reflected on RD_DATA_COUNT at the next
rising clock edge.

If C is less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.

VALID Output Valid: This signal indicates that valid data is available on the output
bus (DOUT).

UNDERFLOW Output Underflow: Indicates that the read request (RD_EN) during the
previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold to
the same value (using PROG_EMPTY_THRESH), or the user can
control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_ASSERT Input Programmable Empty Threshold Assert: This signal is used to set
the lower threshold value for the programmable empty flag, which
defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO Generator
GUI for the valid range of values(a).

PROG_EMPTY_THRESH_NEGATE Input Programmable Empty Threshold Negate: This signal is used to set
the upper threshold value for the programmable empty flag, which
defines when the signal is de-asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO Generator
GUI for the valid range of values(a).

SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and fixed
a single-bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5 FPGA
block RAM or built-in FIFO macro.

DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a double-
bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5 FPGA block
RAM or built-in FIFO macro and data in the FIFO core is corrupted.

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

Table 2-6: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 35
UG175 April 24, 2012

Interface Signals: FIFOs with Common Clock

Table 2-7 defines the interface signals of a FIFO with a common write and read clock and is
divided into standard and optional interface signals. All signals (except asynchronous
reset) are synchronous to the common clock (CLK). Users have the option to select
synchronous or asynchronous reset for the distributed or block RAM FIFO
implementation. See the FIFO Generator User Guide for specific information on reset
requirements and behavior.

Table 2-7: Interface Signals for FIFOs with a Common Clock

Name Direction Description

Required

RST Input Reset: An asynchronous reset that initializes all internal pointers
and output registers.

SRST Input Synchronous Reset: A synchronous reset that initializes all internal
pointers and output registers.

CLK Input Clock: All signals on the write and read domains are synchronous
to this clock.

DIN[N:0] Input Data Input: The input data bus used when writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting this signal causes data
(on DIN) to be written to the FIFO.

FULL Output Full Flag: When asserted, this signal indicates that the FIFO is full.
Write requests are ignored when the FIFO is full, initiating a write
when the FIFO is full is not destructive to the contents of the FIFO.

DOUT[M:0] Output Data Output: The output data bus driven when reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal causes
data to be read from the FIFO (output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates that the FIFO is
empty. Read requests are ignored when the FIFO is empty, initiating
a read while empty is not destructive to the FIFO.

Optional

DATA_COUNT [C:0] Output Data Count: This bus indicates the number of words stored in the
FIFO. If C is less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.

ALMOST_FULL Output Almost Full: When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the assert threshold. It
is deasserted when the number of words in the FIFO is less than the
negate threshold.

WR_ACK Output Write Acknowledge: This signal indicates that a write request
(WR_EN) during the prior clock cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write request (WR_EN)
during the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

http://www.xilinx.com

36 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is used to set the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold to
the same value (using PROG_FULL_THRESH), or the user can
control these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_ASSERT Input Programmable Full Threshold Assert: This signal is used to set the
upper threshold value for the programmable full flag, which
defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO Generator
GUI for the valid range of values(a).

PROG_FULL_THRESH_NEGATE Input Programmable Full Threshold Negate: This signal is used to set the
lower threshold value for the programmable full flag, which
defines when the signal is de-asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO Generator
GUI for the valid range of values(a).

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal indicates that the
FIFO is almost empty and one word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted after the number of
words in the FIFO is less than or equal to the programmable
threshold. It is de-asserted when the number of words in the FIFO
exceeds the programmable threshold.

VALID Output Valid: This signal indicates that valid data is available on the output
bus (DOUT).

UNDERFLOW Output Underflow: Indicates that read request (RD_EN) during the
previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is used to set the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold to
the same value (using PROG_EMPTY_THRESH), or the user can
control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_ASSERT Input Programmable Empty Threshold Assert: This signal is used to set
the lower threshold value for the programmable empty flag, which
defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_EMPTY_THRESH_NEGATE Input Programmable Empty Threshold Negate: This signal is used to set
the upper threshold value for the programmable empty flag, which
defines when the signal is de-asserted. The threshold can be
dynamically set in-circuit during reset.

Table 2-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 37
UG175 April 24, 2012

SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and fixed
a single-bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5 FPGA
block RAM or built-in FIFO macro.

DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a double-
bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5 FPGA block
RAM or built-in FIFO macro and data in the FIFO core is corrupted.

INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM or built-in FIFO
macro. For detailed information, see Chapter 5, “Designing with
the Core.”

INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a Kintex-7,
Virtex-7, or Virtex-6 FPGA block RAM or built-in FIFO macro. For
detailed information, see Chapter 5, “Designing with the Core.”

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

Table 2-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Direction Description

http://www.xilinx.com

38 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 Interface FIFOs
AXI4 interface FIFOs are derived from the Native interface FIFO, as shown in Figure 2-3.
Three AXI4 interface styles are available: AXI4-Stream, AXI4 and AXI4-Lite. In addition to
applications supported by the Native interface FIFO, AXI4 FIFOs can also be used in AXI4
System Bus and Point-to-Point high speed applications.

AXI4 Interface FIFOs do not support built-in FIFO and Shift Register FIFO configurations.

The AXI4 interface protocol uses a two-way VALID and READY handshake mechanism.
The information source uses the VALID signal to show when valid data or control
information is available on the channel. The information destination uses the READY

X-Ref Target - Figure 2-3

Figure 2-3: AXI4 Interface FIFOs Signal Diagram

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 39
UG175 April 24, 2012

signal to show when it can accept the data. Figure 2-4 shows an example timing diagram
for Write and Read operations to the AXI4 FIFO.

In this example timing diagram, the information source generates the VALID signal to
indicate when the data is available. The destination generates the READY signal to
indicate that it can accept the data, and transfer occurs only when both the VALID and
READY signals are high.

Because AXI4 FIFOs are derived from Native Interface FIFOs, much of the behavior is
common between them. The READY signal is generated based on availability of space in
the FIFO and is held high to allow writes to the FIFO. The READY signal is pulled low
only when there is no space in the FIFO left to perform additional writes. The VALID signal
is generated based on availability of data in the FIFO and is held high to allow reads to be
performed from the FIFO. The VALID signal is pulled low only when there is no data
available to be read from the FIFO. The INFORMATION signals are mapped to the DIN
and DOUT bus of Native Interface FIFOs. The width of the AXI4 FIFO is determined by
concatenating all of the INFORMATION signals of the AXI4 Interface. The
INFORMATION signals include all AXI4 signals except for VALID and READY
handshake signals.

AXI4 FIFOs operate in First-Word Fall-Through mode only. The First-Word Fall-Through
(FWFT) feature provides the ability to look ahead to the next word available from the FIFO
without issuing a read operation. When data is available in the FIFO, the first word falls
through the FIFO and appears automatically on the output bus.

AXI4 FIFOs Feature Overview
AXI4 support is available for Kintex-7, Virtex-7, Virtex-6, and Spartan-6 FPGA devices
only.

Easy Integration of Independent FIFOs for Read and Write Channels

For AXI4 and AXI4-Lite interfaces, AXI4 specifies Write Channels and Read Channels.
Write Channels include a Write Address Channel, Write Data Channel and Write Response
Channel. Read Channels include a Read Address Channel and Read Data Channel. The
FIFO Generator provides the ability to generate either Write Channels or Read Channels
for AXI4, or both Write Channels and Read Channels. Three FIFOs are integrated for Write
Channels and two FIFOs are integrated for Read Channels. When both Write and Read
Channels are selected, the FIFO Generator integrates five independent FIFOs.

For AXI4 and AXI4-Lite interfaces, the FIFO Generator provides the ability to implement
independent FIFOs for each channel, as shown in Figure 2-5. For each channel, the core can

X-Ref Target - Figure 2-4

Figure 2-4: AXI4 FIFO Timing Diagram

XX

ACLK

INFORMATION

VALID

READY

http://www.xilinx.com

40 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

be independently configured to generate a block RAM or distributed memory-based FIFO.
The depth of each FIFO can also be independently configured.

Clock and Reset Implementation and Operation

For the AXI4-Stream, AXI4 and AXI4-Lite interfaces, all instantiated FIFOs share clock and
asynchronous active low reset signals (as shown Figure 2-5). In addition, all instantiated
FIFOs can support either independent clock or common clock operation.

The independent clock configuration of the FIFO Generator enables the user to implement
unique clock domains on the write and read ports. The FIFO Generator handles the
synchronization between clock domains, placing no requirements on phase and frequency.
When data buffering in a single clock domain is required, the FIFO Generator can be used
to generate a core optimized for a single clock by selecting the common clock option.

Automatic FIFO Width Calculation

AXI4 FIFOs support symmetric widths for the FIFO Read and Write ports. The FIFO width
for the AXI4 FIFO is determined by the selected interface type (AXI4-Stream, AXI4 or
AXI4-Lite) and user-selected signals and signal widths within the given interface. The
AXI4 FIFO width is then calculated automatically by the aggregation of all signal widths in
a respective channel.

X-Ref Target - Figure 2-5

Figure 2-5: AXI4 Block Diagram

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

Read Clock
Domain

Read Clock
Domain

S_ACLK

S_ARESETN

Write
Address
Channel

Write Data
Channel

Write
Response

Channel

Read
Address
Channel

Read
Response

Channel

Write Channels

Read Channels

Write
Address
Channel

Write Data
Channel

Write
Response
Channel

Read
Address
Channel

Read
Response
Channel

Write Channels

Read Channels

M_ACLK

OptionalMandatory
DS317_09_081210

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 41
UG175 April 24, 2012

Supported Memory Types

The FIFO Generator implements FIFOs built from block RAM or distributed RAM. The
core combines memory primitives in an optimal configuration based on the calculated
width and selected depth of the FIFO.

Packet FIFO

The FIFO Generator core supports the optional Packet FIFO feature in common clock
mode. The principal feature of Packet FIFO is to delay the start of packet (burst)
transmission until the end (LAST beat) of the packet is received. This ensures an
uninterrupted availability of data once master-side transfer begins, thus avoiding source-
end stalling of the AXI data channel. This is valuable in applications in which data
originates at a master device. Examples include real-time signal channels that operate at a
lower data-rate than the downstream AXI switch and/or slave destination, such as a high-
bandwidth memory.

The Packet FIFO feature is supported for Common Clock AXI4 and AXI4-Stream
configurations. It is not supported for AXI4-Lite configurations.

AXI4-Stream Packet FIFO

The FIFO Generator uses AXI4-Stream Interface for the AXI4-Stream Packet FIFO feature.
The FIFO Generator indicates a TVALID on the AXI4-Stream Master side when a complete
packet (marked by TLAST) is received on the AXI4-Stream Slave side or when the AXI4-
Stream FIFO is FULL. Indicating TVALID on the Master side due to the FIFO becoming
FULL is an exceptional case, and in such case, the Packet FIFO acts as a normal FWFT FIFO
forwarding the data received on the Slave side to the Master side until it receives TLAST on
the Slave side.

AXI4 Packet FIFO

The FIFO Generator uses the AXI4 Interface for the AXI4 Packet FIFO feature (for both
write and read channels).

• Packet FIFO on Write Channels: The FIFO Generator indicates an AWVALID on the
AXI4 AW channel Master side when a complete packet (marked by WLAST) is
received on the AXI4 W channel Slave side. The Write Channel Packet FIFO is coupled
to the Write Address Channel so that AW transfers are not posted to the AXI4 Write
Address Channel until all of the data needed for the requested transfer is received on
the AXI4 W channel Slave side. The minimum depth of the W channel is set to 512 and
enables the Write Channel Packet FIFO to hold two packets of its maximum length.

• Packet FIFO on Read Channels: The FIFO Generator indicates an RVALID on the AXI4
R channel Slave side when a complete packet (marked by RLAST) is received on the
AXI4 R channel Master side. The Read Channel Packet FIFO is coupled to the Read
Address Channel so that AR transfers are not posted to the AXI4 Read Address
Channel if there is not enough space left in the Packet FIFO for the associated data.
The minimum depth of the R channel is set to 512, and enables the Read Channel
Packet FIFO to hold two packets of its maximum length.

Error Injection and Correction (ECC) Support

The block RAM macros are equipped with built-in Error Injection and Correction
Checking in the Kintex-7, Virtex-7, and Virtex-6 FPGA architectures. This feature is
available for both the common and independent clock block RAM FIFOs.

http://www.xilinx.com

42 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

For more details on Error Injection and Correction, see Built-in Error Correction Checking
in Chapter 5.

AXI4 Slave Interface for Performing Writes

The AXI4 FIFO provides an AXI4 Slave interface for performing Writes. In the timing
diagram shown in Figure 2-4, the AXI4 Master provides INFORMATION and VALID
signals; the AXI4 Slave interface indicates it is ready to accept the INFORMATION by
asserting the READY signal. The READY signal will be de-asserted only when the FIFO is
full.

AXI4 Master Interface for Performing Reads

For performing reads, the AXI4 FIFO provides an AXI4 Master interface. In Figure 2-4, the
AXI4 FIFO provides INFORMATION and VALID signals; on detecting READY signal
asserted from AXI4 Slave interface, the AXI4 FIFO will place the next INFORMATION on
the bus. The VALID signal will be de-asserted only when the FIFO is empty.

AXI4 FIFOs Feature Summary
Table 2-8 summarizes the supported FIFO Generator features for each clock configuration
and memory type.

AXI4 FIFOs Interface Signals
The following sections define the AXI4 FIFO interface signals.

The value of S_AXIS_TREADY, S_AXI_AWREADY, S_AXI_WREADY, M_AXI_BREADY,
S_AXI_ARREADY and M_AXI_RREADY is 1 when S_ARESETN is 0. To avoid unexpected
behavior, do not perform any transactions while S_ARESETN is 0.

Global Signals

Table 2-9 defines the global interface signals for AXI4 FIFO.

Table 2-8: AXI4 FIFOs Configuration Summary

FIFO Options

Common Clock Independent Clock

Block RAM
Distributed

Memory
Block RAM

Distributed
Memory

Full
Programmable Full
Empty
Programmable Empty
Data Counts
ECC
Interrupt Flags

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 43
UG175 April 24, 2012

The S_ARESETN signal causes a reset of the entire core logic. It is an active low,
asynchronous input synchronized internally in the core before use. The initial hardware
reset should be generated by the user.

AXI4-Stream FIFO Interface Signals

Table 2-10 defines the AXI4-Stream FIFO interface signals.

Table 2-9: AXI4 FIFO - Global Interface Signals

Name Direction Description

Global Clock and Reset Signals Mapped to FIFO Clock and Reset Inputs

M_ACLK Input Global Master Interface Clock: All signals on Master Interface of
AXI4 FIFO are synchronous to M_ACLK

S_ACLK Input Global Slave Interface Clock: All signals are sampled on the rising
edge of this clock.

S_ARESETN Input Global reset: This signal is active low.

Table 2-10: AXI4-Stream FIFO Interface Signals

Name Direction Description

AXI4-Stream Interface: Handshake Signals for FIFO Write Interface

S_AXIS_TVALID Input TVALID: Indicates that the master is driving a valid transfer. A
transfer takes place when both TVALID and TREADY are asserted.

S_AXIS_TREADY Output TREADY: Indicates that the slave can accept a transfer in the
current cycle.

AXI4-Stream Interface: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXIS_TDATA[m-1:0] Input TDATA: The primary payload that is used to provide the data that
is passing across the interface. The width of the data payload is an
integer number of bytes.

S_AXIS_TSTRB[m/8-1:0] Input TSTRB: The byte qualifier that indicates whether the content of the
associated byte of TDATA is processed as a data byte or a position
byte. For a 64-bit DATA, bit 0 corresponds to the least significant
byte on DATA, and bit 7 corresponds to the most significant byte.
For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

S_AXIS_TKEEP[m/8-1:0] Input TKEEP: The byte qualifier that indicates whether the content of the
associated byte of TDATA is processed as part of the data stream.
Associated bytes that have the TKEEP byte qualifier deasserted are
null bytes and can be removed from the data stream. For a 64-bit
DATA, bit 0 corresponds to the least significant byte on DATA, and
bit 7 corresponds to the most significant byte. For example:

• KEEP[0] = 1b, DATA[7:0] is a NULL byte
• KEEP [7] = 0b, DATA[63:56] is not a NULL byte

S_AXIS_TLAST Input TLAST: Indicates the boundary of a packet.

S_AXIS_TID[m:0] Input TID: The data stream identifier that indicates different streams of
data.

http://www.xilinx.com

44 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

S_AXIS_TDEST[m:0] Input TDEST: Provides routing information for the data stream.

S_AXIS_TUSER[m:0] Input TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXI4-Stream Interface: Handshake Signals for FIFO Read Interface

M_AXIS_TVALID Output TVALID: Indicates that the master is driving a valid transfer. A
transfer takes place when both TVALID and TREADY are asserted.

M_AXIS_TREADY Input TREADY: Indicates that the slave can accept a transfer in the
current cycle.

AXI4-Stream Interface: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXIS_TDATA[m-1:0] Output TDATA: The primary payload that is used to provide the data that
is passing across the interface. The width of the data payload is an
integer number of bytes.

M_AXIS_TSTRB[m/8-1:0] Output TSTRB: The byte qualifier that indicates whether the content of the
associated byte of TDATA is processed as a data byte or a position
byte. For a 64-bit DATA, bit 0 corresponds to the least significant
byte on DATA, and bit 7 corresponds to the most significant byte.
For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

M_AXIS_TKEEP[m/8-1:0] Output TKEEP: The byte qualifier that indicates whether the content of the
associated byte of TDATA is processed as part of the data stream.
Associated bytes that have the TKEEP byte qualifier deasserted are
null bytes and can be removed from the data stream. For a 64-bit
DATA, bit 0 corresponds to the least significant byte on DATA, and
bit 7 corresponds to the most significant byte. For example:

• KEEP[0] = 1b, DATA[7:0] is a NULL byte
• KEEP [7] = 0b, DATA[63:56] is not a NULL byte

M_AXIS_TLAST Output TLAST: Indicates the boundary of a packet.

M_AXIS_TID[m:0] Output TID: The data stream identifier that indicates different streams of
data.

M_AXIS_TDEST[m:0] Output TDEST. Provides routing information for the data stream.

M_AXIS_TUSER[m:0] Output TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXI4-Stream FIFO: Optional Sideband Signals

AXIS_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

Table 2-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 45
UG175 April 24, 2012

AXIS_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXIS_INJECTSBITERR Input Inject Single-Bit Error: Injects a single-bit error if the ECC feature is
used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.
For detailed information, see UG175, FIFO Generator User Guide.

AXIS_INJECTDBITERR Input Inject Double-Bit Error: Injects a double-bit error if the ECC feature
is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO. For
detailed information, see UG175, FIFO Generator User Guide.

AXIS_SBITERR Output Single-Bit Error: Indicates that the ECC decoder detected and fixed
a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO. For detailed information, see UG175, FIFO Generator User
Guide.

AXIS_DBITERR Output Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted. For detailed
information, see UG175, FIFO Generator User Guide.

AXIS_OVERFLOW Output Overflow: Indicates that a write request during the prior clock cycle
was rejected, because the FIFO is full. Overflowing the FIFO is not
destructive to the FIFO.

AXIS_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words written
into the FIFO. The count is guaranteed to never underreport the
number of words in the FIFO, to ensure the user never overflows
the FIFO. The exception to this behavior is when a write operation
occurs at the rising edge of write clock; that write operation will
only be reflected on WR_DATA_COUNT at the next rising clock
edge.

D = log2(FIFO depth)+1

AXIS_UNDERFLOW Output Underflow: Indicates that read request during the previous clock
cycle was rejected because the FIFO is empty. Underflowing the
FIFO is not destructive to the FIFO.

AXIS_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words available
for reading in the FIFO. The count is guaranteed to never over-
report the number of words available for reading, to ensure that the
user does not underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of read clock; that
read operation is only reflected on RD_DATA_COUNT at the next
rising clock edge.

D = log2(FIFO depth)+1

Table 2-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

46 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 FIFO Interface Signals

Write Channels

Table 2-11 defines the AXI4 FIFO interface signals for Write Address Channel.

AXIS_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in the
FIFO.

D = log2(FIFO depth)+1

AXIS_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO is
less than the programmable threshold.

AXIS_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number of
words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO
exceeds the programmable threshold.

Table 2-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-11: AXI4 Write Address Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_AWID[m:0] Input Write Address ID: Identification tag for the write address
group of signals.

S_AXI_AWADDR[m:0] Input Write Address: The write address bus gives the address of the
first transfer in a write burst transaction. The associated
control signals are used to determine the addresses of the
remaining transfers in the burst.

S_AXI_AWLEN[7:0] Input Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the number
of data transfers associated with the address.

S_AXI_AWSIZE[2:0] Input Burst Size: Indicates the size of each transfer in the burst. Byte
lane strobes indicate exactly which byte lanes to update.

S_AXI_AWBURST[1:0] Input Burst Type: The burst type, coupled with the size
information, details how the address for each transfer within
the burst is calculated.

S_AXI_AWLOCK[2:0] Input Lock Type: This signal provides additional information about
the atomic characteristics of the transfer.

S_AXI_AWCACHE[4:0] Input Cache Type: Indicates the bufferable, cacheable, write-
through, write-back, and allocate attributes of the
transaction.

S_AXI_AWPROT[3:0] Input Protection Type: Indicates the normal, privileged, or secure
protection level of the transaction and whether the
transaction is a data access or an instruction access.

S_AXI_AWQOS[3:0] Input Quality of Service (QoS): Sent on the write address channel
for each write transaction.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 47
UG175 April 24, 2012

S_AXI_AWREGION[3:0] Input Region Identifier: Sent on the write address channel for each
write transaction.

S_AXI_AWUSER[m:0] Input Write Address Channel User

AXI4 Interface Write Address Channel: Handshake Signals for FIFO Write Interface

S_AXI_AWVALID Input Write Address Valid: Indicates that valid write address and
control information are available:

• 1 = Address and control information available.
• 0 = Address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

S_AXI_AWREADY Output Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Interface Write Address Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_AWID[m:0] Output Write Address ID: This signal is the identification tag for the
write address group of signals.

M_AXI_AWADDR[m:0] Output Write Address: The write address bus gives the address of the
first transfer in a write burst transaction. The associated
control signals are used to determine the addresses of the
remaining transfers in the burst.

M_AXI_AWLEN[7:0] Output Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the number
of data transfers associated with the address.

M_AXI_AWSIZE[2:0] Output Burst Size: This signal indicates the size of each transfer in the
burst. Byte lane strobes indicate exactly which byte lanes to
update.

M_AXI_AWBURST[1:0] Output Burst Type: The burst type, coupled with the size
information, details how the address for each transfer within
the burst is calculated.

M_AXI_AWLOCK[2:0] Output Lock Type: This signal provides additional information about
the atomic characteristics of the transfer.

M_AXI_AWCACHE[4:0] Output Cache Type: This signal indicates the bufferable, cacheable,
write-through, write-back, and allocate attributes of the
transaction.

M_AXI_AWPROT[3:0] Output Protection Type: This signal indicates the normal, privileged,
or secure protection level of the transaction and whether the
transaction is a data access or an instruction access.

M_AXI_AWQOS[3:0] Output Quality of Service (QoS): Sent on the write address channel
for each write transaction.

M_AXI_AWREGION[3:0] Output Region Identifier: Sent on the write address channel for each
write transaction.

M_AXI_AWUSER[m:0] Output Write Address Channel User

Table 2-11: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

48 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 Interface Write Address Channel: Handshake Signals for FIFO Read Interface

M_AXI_AWVALID Output Write Address Valid: Indicates that valid write address and
control information are available:

• 1 = address and control information available
• 0 = address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

M_AXI_AWREADY Input Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Write Address Channel FIFO: Optional Sideband Signals

AXI_AW_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AW_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AW_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_AW_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AW_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_AW_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_AW_OVERFLOW Output Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO .

AXI_AW_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the
user never overflows the FIFO. The exception to this behavior
is when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

Table 2-11: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 49
UG175 April 24, 2012

Table 2-12 defines the AXI4 FIFO interface signals for Write Data Channel.

AXI_AW_UNDERFLOW Output Underflow: Indicates that the read request during the
previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO .

AXI_AW_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that the user does not underflow the FIFO. The
exception to this behavior is when the read operation occurs
at the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AW_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

AXI_AW_PROG_FULL Output Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_AW_PROG_EMPTY Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

Table 2-11: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-12: AXI4 Write Data Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Write Data Channel: Information Signals mapped to FIFO Data Input (DIN) Bus

S_AXI_WID[m:0] Input Write ID Tag: This signal is the ID tag of the write data transfer.
The WID value must match the AWID value of the write
transaction.

S_AXI_WDATA[m-1:0] Input Write Data: The write data bus can be 8, 16, 32, 64, 128, 256 or
512 bits wide.

S_AXI_WSTRB[m/8-1:0] Input Write Strobes: Indicates which byte lanes to update in memory.
There is one write strobe for each eight bits of the write data bus.
Therefore, WSTRB[n] corresponds to WDATA[(8 × n) + 7:(8 ×
n)]. For a 64-bit DATA, bit 0 corresponds to the least significant
byte on DATA, and bit 7 corresponds to the most significant
byte. For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

S_AXI_WLAST Input Write Last: Indicates the last transfer in a write burst.

S_AXI_WUSER[m:0] Input Write Data Channel User

http://www.xilinx.com

50 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 Interface Write Data Channel: Handshake Signals for FIFO Write Interface

S_AXI_WVALID Input Write Valid: Indicates that valid write data and strobes are
available:

• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

S_AXI_WREADY Output Write Ready: Indicates that the slave can accept the write data:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Interface Write Data Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_WID[m:0] Output Write ID Tag: This signal is the ID tag of the write data transfer.
The WID value must match the AWID value of the write
transaction.

M_AXI_WDATA[m-1:0] Output Write Data: The write data bus can be 8, 16, 32, 64, 128, 256 or
512 bits wide.

M_AXI_WSTRB[m/8-1:0] Output Write Strobes: Indicates which byte lanes to update in memory.
There is one write strobe for each eight bits of the write data bus.
Therefore, WSTRB[n] corresponds to WDATA[(8 × n) + 7:(8 ×
n)]. For a 64-bit DATA, bit 0 corresponds to the least significant
byte on DATA, and bit 7 corresponds to the most significant
byte. For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

M_AXI_WLAST Output Write Last: Indicates the last transfer in a write burst.

M_AXI_WUSER[m:0] Output Write Data Channel User

AXI4 Interface Write Data Channel: Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output Write valid: Indicates that valid write data and strobes are
available:

• 1 = Write data and strobes available .
• 0 = Write data and strobes not available.

M_AXI_WREADY Input Write ready: Indicates that the slave can accept the write data:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Write Data Channel FIFO: Optional Sideband Signals

AXI_W_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_W_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

Table 2-12: AXI4 Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 51
UG175 April 24, 2012

AXI_W_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC feature
is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM
FIFO.

AXI_W_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_W_SBITERR Output Single-Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_W_DBITERR Output Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_W_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO

AXI_W_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user
never overflows the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write clock,
that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_W_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO

AXI_W_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_W_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

AXI_W_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_W_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

Table 2-12: AXI4 Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

52 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 2-13 defines the AXI4 FIFO interface signals for Write Response Channel.

Table 2-13: AXI4 Write Response Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Write Response Channel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_BID[m:0] Output Response ID: The identification tag of the write response. The
BID value must match the AWID value of the write transaction
to which the slave is responding.

S_AXI_BRESP[1:0] Output Write Response: Indicates the status of the write transaction. The
allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

S_AXI_BUSER[m:0] Output Write Response Channel User

AXI4 Interface Write Response Channel: Handshake Signals for FIFO Read Interface

S_AXI_BVALID Output Write Response Valid: Indicates that a valid write response is
available:

• 1 = Write response available.
• 0 = Write response not available.

S_AXI_BREADY Input Response Ready: Indicates that the master can accept the
response information.

• 1 = Master ready.
• 0 = Master not ready.

AXI4 Interface Write Response Channel: Information Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_BID[m:0] Input Response ID: The identification tag of the write response. The
BID value must match the AWID value of the write transaction
to which the slave is responding.

M_AXI_BRESP[1:0] Input Write Response: Indicates the status of the write transaction. The
allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

M_AXI_BUSER[m:0] Input Write Response Channel User

AXI4 Interface Write Response Channel: Handshake Signals for FIFO Write Interface

M_AXI_BVALID Input Write Response Valid: Indicates that a valid write response is
available:

• 1 = Write response available.
• 0 = Write response not available.

M_AXI_BREADY Output Response Ready: Indicates that the master can accept the
response information.

• 1 = Master ready.
• 0 = Master not ready.

AXI4 Write Response Channel FIFO: Optional Sideband Signals

AXI_B_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 53
UG175 April 24, 2012

AXI_B_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_B_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC feature
is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM
FIFO.

AXI_B_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_B_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_B_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_B_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

AXI_B_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user
never overflows the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write clock,
that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_B_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

AXI_B_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_B_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

Table 2-13: AXI4 Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

54 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Read Channels

Table 2-14 defines the AXI4 FIFO interface signals for Read Address Channel.

AXI_B_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_B_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

Table 2-13: AXI4 Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-14: AXI4 Read Address Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_ARID[m:0] Input Read Address ID: This signal is the identification tag for the
read address group of signals.

S_AXI_ARADDR[m:0] Input Read Address: The read address bus gives the initial address
of a read burst transaction.

Only the start address of the burst is provided and the control
signals that are issued alongside the address detail how the
address is calculated for the remaining transfers in the burst.

S_AXI_ARLEN[7:0] Input Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the number
of data transfers associated with the address.

S_AXI_ARSIZE[2:0] Input Burst Size: This signal indicates the size of each transfer in the
burst.

S_AXI_ARBURST[1:0] Input Burst Type: The burst type, coupled with the size information,
details how the address for each transfer within the burst is
calculated.

S_AXI_ARLOCK[2:0] Input Lock Type: This signal provides additional information about
the atomic characteristics of the transfer.

S_AXI_ARCACHE[4:0] Input Cache Type: This signal provides additional information about
the cacheable characteristics of the transfer.

S_AXI_ARPROT[3:0] Input Protection Type: This signal provides protection unit
information for the transaction.

S_AXI_ARQOS[3:0] Input Quality of Service (QoS): Sent on the read address channel for
each read transaction.

S_AXI_ARREGION[3:0] Input Region Identifier: Sent on the read address channel for each
read transaction.

S_AXI_ARUSER[m:0] Input Read Address Channel User

AXI4 Interface Read Address Channel: Handshake Signals for FIFO Write Interface

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 55
UG175 April 24, 2012

S_AXI_ARVALID Input Read Address Valid: When high, indicates that the read
address and control information is valid and will remain stable
until the address acknowledge signal, ARREADY, is high.

• 1 = Address and control information valid.
• 0 = Address and control information not valid.

S_AXI_ARREADY Output Read Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Interface Read Address Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_ARID[m:0] Output Read Address ID. This signal is the identification tag for the
read address group of signals.

M_AXI_ARADDR[m:0] Output Read Address: The read address bus gives the initial address
of a read burst transaction.

Only the start address of the burst is provided and the control
signals that are issued alongside the address detail how the
address is calculated for the remaining transfers in the burst.

M_AXI_ARLEN[7:0] Output Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the number
of data transfers associated with the address.

M_AXI_ARSIZE[2:0] Output Burst Size: This signal indicates the size of each transfer in the
burst.

M_AXI_ARBURST[1:0] Output Burst Type: The burst type, coupled with the size information,
details how the address for each transfer within the burst is
calculated.

M_AXI_ARLOCK[2:0] Output Lock Type: This signal provides additional information about
the atomic characteristics of the transfer.

M_AXI_ARCACHE[4:0] Output Cache Type: This signal provides additional information about
the cacheable characteristics of the transfer.

M_AXI_ARPROT[3:0] Output Protection Type: This signal provides protection unit
information for the transaction.

M_AXI_ARQOS[3:0] Output Quality of Service (QoS) signaling, sent on the read address
channel for each read transaction.

M_AXI_ARREGION[3:0] Output Region Identifier: Sent on the read address channel for each
read transaction.

M_AXI_ARUSER[m:0] Output Read Address Channel User

AXI4 Interface Read Address Channel: Handshake Signals for FIFO Read Interface

M_AXI_ARVALID Output Read Address Valid: Indicates, when HIGH, that the read
address and control information is valid and will remain stable
until the address acknowledge signal, ARREADY, is high.

• 1 = Address and control information valid.
• 0 = Address and control information not valid.

Table 2-14: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

56 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

M_AXI_ARREADY Input Read Address Ready: Indicates that the slave is ready to accept
an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4 Read Address Channel FIFO: Optional Sideband Signals

AXI_AR_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AR_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AR_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block
RAM FIFO.

AXI_AR_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_AR_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_AR_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_AR_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO

AXI_AR_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the
user never overflows the FIFO. The exception to this behavior
is when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AR_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Table 2-14: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 57
UG175 April 24, 2012

Table 2-15 defines the AXI4 FIFO interface signals for Read Data Channel.

AXI_AR_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that the user does not underflow the FIFO. The
exception to this behavior is when the read operation occurs at
the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AR_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

AXI_AR_PROG_FULL Output Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO is less than the programmable threshold.

AXI_AR_PROG_EMPTY Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO exceeds the programmable threshold.

Table 2-14: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-15: AXI4 Read Data Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Read Data Channel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_RID[m:0] Output Read ID Tag: ID tag of the read data group of signals. The RID
value is generated by the slave and must match the ARID value
of the read transaction to which it is responding.

S_AXI_RDATA[m-1:0] Output Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

S_AXI_RRESP[1:0] Output Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

S_AXI_RLAST Output Read Last: Indicates the last transfer in a read burst.

S_AXI_RUSER[m:0] Output Read Data Channel User

AXI4 Interface Read Data Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID Output Read Valid: Indicates that the required read data is available and
the read transfer can complete:

• 1 = Read data available.
• 0 = Read data not available.

S_AXI_RREADY Input Read Ready: Indicates that the master can accept the read data
and response information:

• 1= Master ready.
• 0 = Master not ready.

AXI4 Interface Read Data Channel: Information Signals Derived from FIFO Data Input (DIN) Bus

http://www.xilinx.com

58 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

M_AXI_RID[m:0] Input Read ID Tag: ID tag of the read data group of signals. The RID
value is generated by the slave and must match the ARID value
of the read transaction to which it is responding.

M_AXI_RDATA[m-1:0] Input Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

M_AXI_ RRESP[1:0] Input Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

M_AXI_RLAST Input Read Last: Indicates the last transfer in a read burst.

M_AXI_RUSER[m:0] Input Read Data Channel User

AXI4 Interface Read Data Channel: Handshake Signals for FIFO Write Interface

M_AXI_RVALID Input Read Valid: Indicates that the required read data is available and
the read transfer can complete:

• 1 = Read data available.
• 0 = Read data not available.

M_AXI_RREADY Output Read Ready: Indicates that the master can accept the read data
and response information:

• 1= Master ready.
• 0 = Master not ready.

AXI4 Read Data Channel FIFO: Optional Sideband Signals

AXI_R_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_R_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_R_INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a Kintex-7,
Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_R_INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a Kintex-7,
Virtex-7, or Virtex-6 block RAM FIFO.

AXI_R_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_R_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_R_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO

Table 2-15: AXI4 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 59
UG175 April 24, 2012

AXI4-Lite FIFO Interface Signals

Write Channels

Table 2-16 defines the AXI4-Lite FIFO interface signals for Write Address Channel.

AXI_R_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user
never overflows the FIFO. The exception to this behavior is when
a write operation occurs at the rising edge of write clock, that
write operation will only be reflected on WR_DATA_COUNT at
the next rising clock edge.

D = log2(FIFO depth)+1

AXI_R_UNDERFLOW Output Underflow: Indicates that read request during the previous clock
cycle was rejected because the FIFO is empty. Underflowing the
FIFO is not destructive to the FIFO

AXI_R_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_R_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in the
FIFO.

D = log2(FIFO depth)+1

AXI_R_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO
is less than the programmable threshold.

AXI_R_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO
exceeds the programmable threshold.

Table 2-15: AXI4 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-16: AXI4-Lite Write Address Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_AWADDR[m:0] Input Write Address: Gives the address of the first transfer in a write
burst transaction. The associated control signals are used to
determine the addresses of the remaining transfers in the burst.

S_AXI_AWPROT[3:0] Input Protection Type: Indicates the normal, privileged, or secure
protection level of the transaction and whether the transaction
is a data access or an instruction access.

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Write Interface

http://www.xilinx.com

60 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

S_AXI_AWVALID Input Write Address Valid: Indicates that valid write address and
control information are available:

• 1 = Address and control information available.
• 0 = Address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

S_AXI_AWREADY Output Write Address Ready: Indicates that the slave is ready to accept
an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Write Address Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_AWADDR[m:0] Output Write Address: Gives the address of the first transfer in a write
burst transaction. The associated control signals are used to
determine the addresses of the remaining transfers in the burst.

M_AXI_AWPROT[3:0] Output Protection Type: This signal indicates the normal, privileged, or
secure protection level of the transaction and whether the
transaction is a data access or an instruction access.

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Read Interface

M_AXI_AWVALID Output Write Address Valid: Indicates that valid write address and
control information are available:

• 1 = Address and control information available.
• 0 = Address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

M_AXI_AWREADY Input Write Address Ready: Indicates that the slave is ready to accept
an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Write Address Channel FIFO: Optional Sideband Signals

AXI_AW_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AW_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AW_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block
RAM FIFO.

Table 2-16: AXI4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 61
UG175 April 24, 2012

AXI_AW_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_AW_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AW_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_AW_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO

AXI_AW_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the
user never overflows the FIFO. The exception to this behavior
is when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AW_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

AXI_AW_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The
exception to this behavior is when the read operation occurs at
the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AW_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

AXI_AW_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_AW_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

Table 2-16: AXI4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

62 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 2-17 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

Table 2-17: AXI4-Lite Write Data Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Data Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_WDATA[m-1:0] Input Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

S_AXI_WSTRB[m/8-1:0] Input Write Strobes: Indicates which byte lanes to update in memory.
There is one write strobe for each eight bits of the write data
bus. Therefore, WSTRB[n] corresponds to WDATA[(8 × n) +
7:(8 × n)]. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Write Interface

S_AXI_WVALID Input Write Valid: Indicates that valid write data and strobes are
available:

• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

S_AXI_WREADY Output Write Ready: Indicates that the slave can accept the write data:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Write Data Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_WDATA[m-1:0] Output Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

M_AXI_WSTRB[m/8-1:0] Output Write Strobes: Indicates which byte lanes to update in memory.
There is one write strobe for each eight bits of the write data
bus. Therefore, WSTRB[n] corresponds to WDATA[(8 × n) +
7:(8 × n)]. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output Write Valid: Indicates that valid write data and strobes are
available:

• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

M_AXI_WREADY Input Write Ready: Indicates that the slave can accept the write data:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Write Data Channel FIFO: Optional Sideband Signals

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 63
UG175 April 24, 2012

AXI_W_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_W_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_W_INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a Kintex-
7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_W_INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO.

AXI_W_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_W_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_W_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

AXI_W_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the
user never overflows the FIFO. The exception to this behavior
is when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_W_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

AXI_W_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that the user does not underflow the FIFO. The
exception to this behavior is when the read operation occurs at
the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_W_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

Table 2-17: AXI4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

64 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 2-18 defines the AXI4-Lite FIFO interface signals for Write Response Channel.

AXI_W_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_W_PROG_EMPTY Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO exceeds the programmable threshold.

Table 2-17: AXI4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-18: AXI4-Lite Write Response Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Response Channel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_BRESP[1:0] Output Write Response: Indicates the status of the write transaction.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Read Interface

S_AXI_BVALID Output Write Response Valid: Indicates that a valid write response is
available:

• 1 = Write response available.
• 0 = Write response not available.

S_AXI_BREADY Input Response Ready: Indicates that the master can accept the
response information.

• 1 = Master ready.
• 0 = Master not ready.

AXI4-Lite Interface Write Response Channel: Information Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_BRESP[1:0] Input Write response: Indicates the status of the write transaction. The
allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Write Interface

M_AXI_BVALID Input Write response valid: Indicates that a valid write response is
available:

• 1 = Write response available.
• 0 = Write response not available.

M_AXI_BREADY Output Response ready: Indicates that the master can accept the
response information.

• 1 = Master ready.
• 0 = Master not ready.

AXI4-Lite Write Response Channel FIFO: Optional Sideband Signals

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 65
UG175 April 24, 2012

AXI_B_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_B_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D is than log2(FIFO depth)-1

AXI_B_INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a Kintex-
7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_B_INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO.

AXI_B_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_B_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_B_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

AXI_B_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user
never overflows the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write clock,
that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_B_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

AXI_B_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_B_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

Table 2-18: AXI4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

66 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Read Channels

Table 2-19 defines the AXI4-Lite FIFO interface signals for Read Address Channel.

AXI_B_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_B_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

Table 2-18: AXI4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-19: AXI4-Lite Read Address Channel FIFO Interface Signals

Name Direction Description

 AXI4-Lite Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_ARADDR[m:0] Input Read Address: The read address bus gives the initial address of
a read burst transaction. Only the start address of the burst is
provided and the control signals that are issued alongside the
address detail how the address is calculated for the remaining
transfers in the burst.

S_AXI_ARPROT[3:0] Input Protection Type: This signal provides protection unit
information for the transaction.

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Write Interface

S_AXI_ARVALID Input Read Address Valid: When high, indicates that the read address
and control information is valid and will remain stable until the
address acknowledge signal, ARREADY, is high.

• 1 = Address and control information valid.
• 0 = Address and control information not valid.

S_AXI_ARREADY Output Read Address Ready: Indicates that the slave is ready to accept
an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Read Address Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_ARADDR[m:0] Output Read Address: The read address bus gives the initial address of
a read burst transaction. Only the start address of the burst is
provided and the control signals that are issued alongside the
address detail how the address is calculated for the remaining
transfers in the burst.

M_AXI_ARPROT[3:0] Output Protection Type: This signal provides protection unit
information for the transaction.

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Read Interface

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 67
UG175 April 24, 2012

M_AXI_ARVALID Output Read Address Valid: WHen high, indicates that the read address
and control information is valid and will remain stable until the
address acknowledge signal, ARREADY, is high.

• 1 = Address and control information valid.
• 0 = Address and control information not valid.

M_AXI_ARREADY Input Read Address Ready: Indicates that the slave is ready to accept
an address and associated control signals:

• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Read Address Channel FIFO: Optional Sideband Signals

AXI_AR_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AR_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_AR_INJECTSBITERR Input Inject Single-Bit Error: Injects a single-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block
RAM FIFO.

AXI_AR_INJECTDBITERR Input Inject Double-Bit Error: Injects a double-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_AR_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AR_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_AR_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

AXI_AR_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user
never overflows the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write clock,
that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

Table 2-19: AXI4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

68 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 2-20 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

AXI_AR_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

AXI_AR_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_AR_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

D = log2(FIFO depth)+1

AXI_AR_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXI_AR_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

Table 2-19: AXI4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Table 2-20: AXI4-Lite Read Data Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Read Data Channel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_RDATA[m-1:0] Output Read Data: The read data bus can be 8, 16, 32, 64, 128, 256 or 512
bits wide.

S_AXI_RRESP[1:0] Output Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID Output Read Valid: Indicates that the required read data is available and
the read transfer can complete:

• 1 = Read data available.
• 0 = Read data not available.

S_AXI_RREADY Input Read Ready: indicates that the master can accept the read data
and response information:

• 1= Master ready.
• 0 = Master not ready.

AXI4-Lite Interface Read Data Channel: Information Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_RDATA[m-1:0] Input Read Data: The read data bus can be 8, 16, 32, 64, 128, 256 or 512
bits wide.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 69
UG175 April 24, 2012

M_AXI_ RRESP[1:0] Input Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Write Interface

M_AXI_RVALID Input Read Valid: Indicates that the required read data is available and
the read transfer can complete:

• 1 = Read data available.
• 0 = Read data not available.

M_AXI_RREADY Output Read ready: Indicates that the master can accept the read data and
response information:

• 1= Master ready.
• 0 = Master not ready.

AXI4-Lite Read Data Channel FIFO: Optional Sideband Signals

AXI_R_PROG_FULL_THRESH[D:0] Input Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_R_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXI_R_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC feature
is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM
FIFO.

AXI_R_INJECTDBITERR Input Inject DOuble-Bit Error. Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_R_SBITERR Output Single-Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_R_DBITERR Output Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXI_R_OVERFLOW Output Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

AXI_R_WR_DATA_COUNT[D:0] Output Write Data Count: This bus indicates the number of words written
into the FIFO. The count is guaranteed to never underreport the
number of words in the FIFO, to ensure the user never overflows
the FIFO. The exception to this behavior is when a write operation
occurs at the rising edge of write clock, that write operation will
only be reflected on WR_DATA_COUNT at the next rising clock
edge.

D = log2(FIFO depth)+1

Table 2-20: AXI4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

70 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI_R_UNDERFLOW Output Underflow: Indicates that read request during the previous clock
cycle was rejected because the FIFO is empty. Underflowing the
FIFO is not destructive to the FIFO.

AXI_R_RD_DATA_COUNT[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that the user does not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the rising
edge of read clock, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log2(FIFO depth)+1

AXI_R_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored in the
FIFO.

D = log2(FIFO depth)+1

AXI_R_PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO
is less than the programmable threshold.

AXI_R_PROG_EMPTY Output Programmable Empty: This signal is asserted when the number of
words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the FIFO
exceeds the programmable threshold.

Table 2-20: AXI4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 71
UG175 April 24, 2012

Chapter 3

Generating the Native FIFO Core

This chapter contains information and instructions for using the Xilinx CORE Generator
system to customize the FIFO Generator for Native FIFO Interfaces.

CORE Generator Graphical User Interface
The Native FIFO Interface GUI includes seven configuration screens.

• Interface Type

• FIFO Implementation

• Performance Options and Data Port Parameters

• Optional Flags, Handshaking, and Initialization

• Initialization and Programmable Flags

• Data Count

• Summary

http://www.xilinx.com

72 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Interface Type
The main FIFO Generator screen is used to define the component name and provides the
Interface Options for the core.

Component Name
Base name of the output files generated for this core. The name must begin with a letter
and be composed of the following characters: a to z, 0 to 9, and “_”.

Interface Type
• Native

Implements a Native FIFO.

• AXI4

Implements an AXI4 FIFO in First-Word-Fall-Through mode.

X-Ref Target - Figure 3-1

Figure 3-1: Main FIFO Generator Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 73
UG175 April 24, 2012

FIFO Implementation
The FIFO Implementation screen is used to define the configuration options for the core.

This screen of the GUI allows the user to select from a set of available FIFO
implementations and supported features. The key supported features that are only
available for certain implementations are highlighted by checks in the right-margin. The
available options are listed below, with cross-references to additional information.

X-Ref Target - Figure 3-2

Figure 3-2: FIFO Implementation Screen

http://www.xilinx.com

74 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Common Clock (CLK), Block RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 105. This
implementation optionally supports first-word-fall-through (selectable in the second GUI
screen, shown in Figure 3-3).

Common Clock (CLK), Distributed RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 105. This
implementation optionally supports first-word-fall-through (selectable in the second GUI
screen, shown in Figure 3-3).

Common Clock (CLK), Shift Register

For details, see Common Clock FIFO: Shift Registers, page 106. This implementation is
only available in Virtex-4 FPGA and newer architectures.

Common Clock (CLK), Built-in FIFO

For details, see Common Clock: Built-in FIFO, page 105. This implementation is only
available when using the Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA
architectures. This implementation optionally supports first-word fall-through (selectable
in the second GUI screen, shown in Figure 3-3).

Independent Clocks (RD_CLK, WR_CLK), Block RAM

For details, see Independent Clocks: Block RAM and Distributed RAM, page 101. This
implementation optionally supports asymmetric read/write ports and first-word fall-
through (selectable in the second GUI screen, shown in Figure 3-3).

Independent Clocks (RD_CLK, WR_CLK), Distributed RAM

For more information, see Independent Clocks: Block RAM and Distributed RAM,
page 101. This implementation optionally supports first-word fall-through (selectable in
the second GUI screen, shown in Figure 3-3).

Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO

For more information, see Independent Clocks: Built-in FIFO, page 103. This
implementation is only available when using Kintex-7, Virtex-7, Virtex-6, Virtex-5 or
Virtex-4 FPGA architectures. This implementation optionally supports first-word fall-
through (selectable in the second GUI screen, shown in Figure 3-3).

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 75
UG175 April 24, 2012

Performance Options and Data Port Parameters
This screen provides performance options and data port parameters for the core.

Read Mode
Available only when block RAM or distributed RAM FIFOs are selected. Support for built-
in FIFOs is only available for Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA
implementations.

Standard FIFO

Implements a FIFO with standard latencies, and without using output registers.

First-Word Fall-Through FIFO

Implements a FIFO with registered outputs. For more information about FWFT
functionality, see First-Word Fall-Through FIFO Read Operation, page 109.

X-Ref Target - Figure 3-3

Figure 3-3: Performance Options and Data Port Parameters Screen

http://www.xilinx.com

76 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Built-in FIFO Options

Read/Write Clock Frequencies

The Read Clock Frequency and Write Clock Frequency fields can be any integer from 1 to
1000. They are used to determine the optimal implementation of the domain-crossing logic
in the core. This option is only available for built-in FIFOs with independent clocks. If the
desired frequency is not within the allowable range, scale the read and write clock
frequencies so that they fit within the valid range, while maintaining their ratio
relationship.

Important: It is critical that this information is entered and accurate. If this information is
not provided, it can result in a sub-optimal solution with incorrect core behavior.

Data Port Parameters

Write Width

For Virtex-4 FPGA Built-in FIFO macro, the valid range is 4, 9, 18 and 36. For other memory
type configurations, the valid range is 1 to 1024.

Write Depth

For Virtex-4 FPGA Built-in FIFO macro, the valid range automatically varies based on
write width selection. For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-in FIFO
macro, the valid range is 512 to 4194304. Only depths with powers of 2 are allowed.

For non Built-in FIFO, the valid range is 1 to 4194304. Only depths with powers of 2 are
allowed.

Read Width

Available only if independent clocks configuration with block RAM is selected. Valid
range must comply with asymmetric port rules. See Non-symmetric Aspect Ratios,
page 123.

Read Depth

Automatically calculated based on Write Width, Write Depth, and Read Width.

Implementation Options

Error Correction Checking in Block RAM or Built-in FIFO

The Error Correction Checking (ECC) feature enables built-in error correction in the
Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA block RAM and built-in FIFO macros. When
this feature is enabled, the block RAM or built-in FIFO is set to the full ECC mode, where
both the encoder and decoder are enabled.

Use Embedded Registers in Block RAM or FIFO

The block RAM macros available in Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA, as well as built-in FIFO macros available in Kintex-7, Virtex-7, Virtex-6 and Virtex-
5 FPGA, have built-in embedded registers that can be used to pipeline data and improve

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 77
UG175 April 24, 2012

macro timing. This option enables users to add one pipeline stage to the output of the FIFO
and take advantage of the available embedded registers; however, the ability to reset the
data output of the Virtex-5 FPGA built-in FIFO is disabled when this feature is used. For
built-in FIFOs, this feature is only supported for synchronous FIFO configurations that
have only 1 FIFO macro in depth. See Embedded Registers in Block RAM and FIFO Macros
(Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs), page 126.

Optional Flags, Handshaking, and Initialization
This screen allows you to select the optional status flags and set the handshaking options.

Optional Flags
Refer to Latency in Chapter 5 for the latency of the Almost Full/Empty flags due to
write/read operation.

X-Ref Target - Figure 3-4

Figure 3-4: Optional Flags, Handshaking, and Error Injection Options Screen

http://www.xilinx.com

78 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Almost Full Flag

Available in all FIFO implementations except those using Kintex-7, Virtex-7, Virtex-6,
Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that indicates the FIFO
is almost full (only one more word can be written).

Almost Empty Flag

Available in all FIFO implementations except in those using Kintex-7, Virtex-7, Virtex-6,
Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that indicates the FIFO
is almost empty (only one more word can be read).

Handshaking Options
Refer to Latency in Chapter 5 for the latency of the handshaking flags due to write/read
operation.

Write Port Handshaking

Write Acknowledge

Generates write acknowledge flag which reports the success of a write operation. This
signal can be configured to be active high or low (default active high).

Overflow (Write Error)

Generates overflow flag which indicates when the previous write operation was not
successful. This signal can be configured to be active high or low (default active high).

Read Port Handshaking

Valid (Read Acknowledge)

Generates valid flag which indicates when the data on the output bus is valid. This signal
can be configured to be active high or low (default active high).

Underflow (Read Error)

Generates underflow flag to indicate that the previous read request was not successful.
This signal can be configured to be active high or low (default active high).

Error Injection

Single Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block RAM
or built-in FIFOs, with ECC option enabled. Generates an input port to inject a single bit
error on write and an output port that indicates a single bit error occurred.

Double Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block RAM
or built-in FIFOs, with ECC option enabled. Generates an input port to inject a double bit
error on write and an output port that indicates a double bit error occurred.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 79
UG175 April 24, 2012

Initialization and Programmable Flags
Use this screen to select the initialization values and programmable flag type when
generating a specific FIFO Generator configuration.

X-Ref Target - Figure 3-5

Figure 3-5: Programmable Flags and Reset Screen

http://www.xilinx.com

80 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Initialization

Reset Pin

For FIFOs implemented with block RAM or distributed RAM, a reset pin is not required,
and the input pin is optional.

• Enable Reset Synchronization. Optional selection only available for independent clock
block RAM or distributed RAM FIFOs. When unchecked, WR_RST/RD_RST is
available. See Reset Behavior in Chapter 5 for details.

• Asynchronous Reset. Optional selection for a common-clock FIFO implemented using
distributed or block RAM.

• Synchronous Reset. Optional selection for a a common-clock FIFO implemented using
distributed or block RAM.

Full Flags Reset Value

For block RAM, distributed RAM, and shift register configurations, the user can choose the
reset value of the full flags (PROG_FULL, ALMOST_FULL, and FULL) during reset.

Use Dout Reset

Available in Virtex-4 FPGA or newer architectures for all implementations using block
RAM, distributed RAM, shift register or Virtex-6 common clock built-in with embedded
register option. Only available if a reset pin option is selected. If selected, the DOUT output
of the FIFO will reset to the defined DOUT Reset Value (below) when the reset is asserted.
If not selected, the DOUT output of the FIFO will not be effected by the assertion of reset,
and DOUT will hold its previous value.

Disabling this feature for Spartan®-3 devices may improve timing for the distributed RAM
and shift register FIFO.

Use Dout Reset Value

Available only when Use Dout Reset is selected, this field indicates the hexidecimal value
asserted on the output of the FIFO when RST (SRST) is asserted. See Appendix C, DOUT
Reset Value Timing for the timing diagrams for different configurations.

Programmable Flags
Refer to Latency in Chapter 5 for the latency of the programmable flags due to write/read
operation.

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed and varies depending on the options selected elsewhere in the
GUI.

Full Threshold Assert Value

Available when Programmable Full with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is provided in the
GUI. When using a single threshold constant, only the assert threshold value is used.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 81
UG175 April 24, 2012

Full Threshold Negate Value

Available when Programmable Full with Multiple Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUI.

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid range
for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUI.

Empty Threshold Assert Value

Available when Programmable Empty with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is provided in the
GUI. When using a single threshold constant, only the assert value is used.

Empty Threshold Negate Value

Available when Programmable Empty with Multiple Threshold Constants is selected.
Enter a user-defined value. The valid range for this threshold is provided in the GUI.

http://www.xilinx.com

82 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Data Count
Use this screen to set data count options.

Note: Valid range of values shown in the GUI are the actual values even though they are grayed out
for some selection.

Data Count Options
Refer to Latency in Chapter 5 for the latency of the data counts due to write/read
operation.

Use Extra Logic For More Accurate Data Counts

Only available for independent clocks FIFO with block RAM or distributed RAM, and
when using first-word fall-through. This option uses additional external logic to generate
a more accurate data count. This feature is always enabled for common clock FIFOs with
block RAM or distributed RAM and when using first-word-fall-through. See First-Word
Fall-Through Data Count, page 120 for details.

Data Count (Synchronized With Clk)

Available when a common clock FIFO with block RAM, distributed RAM, or shift registers
is selected.

X-Ref Target - Figure 3-6

Figure 3-6: Data Count Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 83
UG175 April 24, 2012

Data Count Width

Available when Data Count is selected. Valid range is from 1 to log2 (input depth).

Write Data Count (Synchronized with Write Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

Write Data Count Width

Available when Write Data Count is selected. Valid range is from 1 to log2 (input depth).

Read Data Count (Synchronized with Read Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

Read Data Count Width

Available when Read Data Count is selected. Valid range is from 1 to log2 (output depth).

http://www.xilinx.com

84 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Summary
This screen displays a summary of the selected FIFO options, including the FIFO type,
FIFO dimensions, and the status of any additional features selected. In the Additional
Features section, most features display either Not Selected (if unused), or Selected (if used).

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on screen three of the FIFO GUI.
X-Ref Target - Figure 3-7

Figure 3-7: Summary Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 85
UG175 April 24, 2012

Chapter 4

Generating the AXI4 FIFO Core

This chapter contains information and instructions for using the Xilinx CORE Generator
system to customize the AXI4 FIFO Generator.

CORE Generator Graphical User Interface
For AXI4, the FIFO Generator GUI includes five configuration GUI pages:

• Interface Selection

• Width Calculation

• FIFO Configuration

• Common Page for FIFO Configuration

For AXI4 and AXI4-Lite interfaces, FIFO Generator provides a separate page to
configure each FIFO channel. For more details, see Easy Integration of Independent
FIFOs for Read and Write Channels in Chapter 2.

• Summary

The configuration settings specified on the Page 2 of the GUI is applied to all selected
Channels of the AXI4 or AXI4-Lite interfaces

More details on these customization GUI pages are provided in the following sections.

http://www.xilinx.com

86 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 Interface Selection
Figure 4-1 shows the AXI4 interface selection screen.

AXI4 Interface Options

Three AXI4 interface styles are available: AXI4-Stream, AXI4 and AXI4-Lite.

Clocking Options

FIFOs may be configured with either independent or common clock domains for Write and
Read operations.

The Independent Clock configuration enables the user to implement unique clock domains
on the Write and Read ports. The FIFO Generator handles the synchronization between
clock domains, placing no requirements on phase and frequency. When data buffering in a
single clock domain is required, the FIFO Generator can be used to generate a core
optimized for a single clock by selecting the Common Clocks option.

For more details on Common Clock FIFO, see Common Clock FIFO: Block RAM and
Distributed RAM in Chapter 5.

For more details on Independent Clock FIFO, see Independent Clocks: Block RAM and
Distributed RAM in Chapter 5.

X-Ref Target - Figure 4-1

Figure 4-1: AXI4 Interface Selection Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 87
UG175 April 24, 2012

Performing Writes with Slave Clock Enable

The Slave Interface Clock Enable allows the AXI4 Master to operate at fractional rates of
AXI4 Slave Interface (or Write side) of FIFO. The above timing diagram shows the AXI4
Master operating at half the frequency of the FIFO AXI4 Slave interface. The Clock Enable
in this case is Single Clock Wide, Synchronous and occurs once in every two clock cycles of
the AXI4 Slave clock.

Performing Reads with Master Clock Enable

The Master Interface Clock Enable allows AXI4 Slave to operate at fractional rates of AXI4
Master Interface (or Read side) of the FIFO. The above timing diagram shows the AXI4
Slave operating at half the frequency of the FIFO AXI4 Master Interface. The Clock Enable
in this case is Single Clock Wide, Synchronous and occurs once in every two clock cycles of
the FIFO AXI4 Slave clock. the FIFO.

Width Calculation
The AXI4 FIFO Width is determined by aggregating all of the channel information signals
in a channel. The channel information signals for AXI4-Stream, AXI4 and AXI4-Lite
interfaces are listed in Table 4-1 and Table 4-2. GUI screens are available for configuring:

• AXI4-Stream Width Calculation

• AXI4 Width Calculation

• AXI4-Lite Width Calculation

http://www.xilinx.com

88 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4-Stream Width Calculation

CORE Generator AXI4-Stream FIFO allows user to configure widths for TDATA, TUSER,
TID and TDEST signals. For TKEEP and TSTRB signals the width is determined by the
configured TDATA width and is internally calculated by using the equation (TDATA
Width)/8.

For all the selected signals, the AXI4-Stream FIFO width is determined by summing up the
widths of all the selected signals.

X-Ref Target - Figure 4-2

Figure 4-2: AXI4-Stream Width Calculation Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 89
UG175 April 24, 2012

AXI4 Width Calculation

The AXI4 FIFO widths can be configured for ID, ADDR, DATA and USER signals. ID
Width is applied to all channels in the AXI4 interface. When both write and read channels
are selected, the same ADDR and DATA widths are applied to both the write channels and
read channels. The user signal is the only optional signal for the AXI4 FIFO and can be
independently configured for each channel.

For all the selected signals, the AXI4 FIFO width for the respective channel is determined
by summing up the widths of signals in the particular channel, as shown in Table 4-1.

X-Ref Target - Figure 4-3

Figure 4-3: AXI4 Width Calculation Screen

Table 4-1: AXI4 Signals used in AXI FIFO Width Calculation

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

AWID[m:0] ARID[m:0] WID[m:0] RID[m:0] BID[m:0]

AWADDR[m:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m-1:0] BRESP[1:0]

AWLEN[7:0] ARLEN[7:0] WLAST RLAST BUSER[m:0]

AWSIZE[2:0] ARSIZE[2:0] WSTRB[m/8-1:0] RRESP[1:0]

http://www.xilinx.com

90 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AWBURST[1:0] ARBURST[1:0] WUSER[m:0] RUSER[m:0]

AWLOCK[2:0] ARLOCK[2:0]

AWCACHE[4:0] ARCACHE[4:0]

AWPROT[3:0] ARPROT[3:0]

AWREGION[3:0] ARREGION[3:0]

AWQOS[3:0] ARQOS[3:0]

AWUSER[m:0] ARUSER[m:0]

Table 4-1: AXI4 Signals used in AXI FIFO Width Calculation (Cont’d)

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 91
UG175 April 24, 2012

AXI4-Lite Width Calculation

The AXI4-Lite FIFO allows users to configure the widths for ADDR and DATA signals.
When both write and read channels are selected, the same ADDR and DATA widths are
applied to both the write channels and read channels.

AXI4-Lite FIFO width for the respective channel is determined by summing up the widths
of all the signals in the particular channel, as shown in Table 4-2.

X-Ref Target - Figure 4-4

Figure 4-4: AXI4-Lite Width Calculation Screen

Table 4-2: AXI4-Lite Width Calculation

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

AWADDR[m:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m:0] BRESP[1:0]

AWPROT[3:0] ARPROT[3:0] WSTRB[m/8-1:0] RRESP[1:0]

http://www.xilinx.com

92 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Default Settings
Table 4-3 shows the default settings for each AXI4 interface type.

Table 4-3: AXI4 FIFO Default Settings

Interface Type Channels Memory Type FIFO Depth

AXI4 Stream NA Block Memory 1024

AXI4 Write Address, Read Address,
Write Response

Distributed Memory 16

AXI4 Write Data, Read Data Block Memory 1024

AXI4-Lite Write Address, Read Address,
Write Response

Distributed Memory 16

AXI4-Lite Write Data, Read Data Distributed Memory 16

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 93
UG175 April 24, 2012

FIFO Configurations

The functionality of AXI4 FIFO is the same as the Native FIFO functionality in the first-
word fall-through mode. The feature set supported includes ECC (block RAM),
Programable Ready Generation (full, almost full, programmable full), and Programmable
Valid Generation (empty, almost empty, programmable empty). The data count option tells
you the number of words in the FIFO, and there is also are optional Interrupt flags
(Overflow and Underflow) for the block RAM and distributed RAM implementations.

For more details on first-word fall-through mode, see First-Word Fall-Through FIFO Read
Operation in Chapter 5.

Memory Types

The FIFO Generator implements FIFOs built from block RAM or distributed RAM. The
core combines memory primitives in an optimal configuration based on the calculated
width and selected depth of the FIFO.

X-Ref Target - Figure 4-5

Figure 4-5: AXI4 FIFO Configurations Screen

http://www.xilinx.com

94 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Error Injection and Correction (ECC)

The block RAM and FIFO macros are equipped with built-in Error Injection and Correction
Checking in the Virtex-6 FPGA architecture. This feature is available for both common and
independent clock block RAM FIFOs.

For more details on Error Injection and Correction, see Built-in Error Correction Checking
in Chapter 5.

FIFO Width

AXI4 FIFOs support symmetric Write and Read widths. The width of the AXI4 FIFO is
determined based on the selected Interface Type (AXI4-Stream, AXI4 or AXI4-Lite), and
the selected signals and configured signal widths within the given interface. The
calculation of the FIFO Write Width is defined in Width Calculation, page 87.

FIFO Depth

AXI4 FIFOs allow ranging from 16 to 4194304. Only depths with powers of 2 are allowed.

Programmable Flags
This section includes details about the available programmable flags.

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed and varies depending on the options selected elsewhere in the
GUI.

Full Threshold Assert Value

Available when Programmable Full with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUI.

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid range
for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUI.

Empty Threshold Assert Value

Available when Programmable Empty with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUI.

Data Threshold Parameters
This section includes details about data threshold parameters.

Occupancy Data Counts

DATA_COUNT tracks the number of words in the FIFO. The width of the data count bus
will be always be set to log2(FIFO depth)+1. In common clock mode, the AXI4 FIFO
provides a single “Data Count” output. In independent clock mode, it provides Read Data
Count and Write Data Count outputs.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 95
UG175 April 24, 2012

For more details on Occupancy Data Counts, see First-Word Fall-Through Data Count in
Chapter 5 and More Accurate Data Count (Use Extra Logic) in Chapter 5.

Examples for Data Threshold Parameters

• Programmable Full Threshold can be used to restrict FIFO Occupancy to less than 16

• Programmable Empty Threshold can be used to drain a Partial AXI4 transfer based on
empty threshold

• Data Counts can be used to determine number of Transactions in the FIFO

Common Configurations

Interrupt Flags
The underflow flag (UNDERFLOW) is used to indicate that a Read operation is
unsuccessful. This occurs when a Read is initiated and the FIFO is empty. This flag is
synchronous with the Read clock (RD_CLK). Underflowing the FIFO does not change the
state of the FIFO (it is non-destructive).

X-Ref Target - Figure 4-6

Figure 4-6: AXI4 FIFO Common Configurations Screen

http://www.xilinx.com

96 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

The overflow flag (OVERFLOW) is used to indicate that a Write operation is unsuccessful.
This flag is asserted when a Write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the Write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

For more details on Overflow and Underflow Flags, see Underflow in Chapter 5 and
Overflow in Chapter 5.

Summary
The summary screen displays a summary of the AXI4 FIFO options that have been selected
by the user, including the Interface Type, FIFO type, FIFO dimensions, and the selection
status of any additional features selected. In the Additional Features section, most features
display either Not Selected (if unused), or Selected (if used).

Note: FIFO depth provides the actual FIFO depths for the selected configuration. These depths may
differ slightly from the depth selected on screen 4 of the AXI4 FIFO GUI.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 97
UG175 April 24, 2012

AXI4-Stream Summary
X-Ref Target - Figure 4-7

Figure 4-7: AXI4-Stream Summary Screen

http://www.xilinx.com

98 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

AXI4 and AXI4-Lite Summary
X-Ref Target - Figure 4-8

Figure 4-8: AXI4 / AXI4-Lite Summary Screen

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 99
UG175 April 24, 2012

Chapter 5

Designing with the Core

This chapter describes the steps required to turn a FIFO Generator core into a fully
functioning design integrated with the user application logic. It is important to note that
depending on the configuration of the FIFO core, only a subset of the implementation
details provided are applicable. For successful use of a FIFO core, the design guidelines
discussed in this chapter must be observed.

General Design Guideline

Know the Degree of Difficulty
A fully-compliant and feature-rich FIFO design is challenging to implement in any
technology. For this reason, it is important to understand that the degree of difficulty can
be significantly influenced by

• Maximum system clock frequency

• Targeted device architecture

• Specific user application

Ensure that design techniques are used to facilitate implementation, including pipelining
and use of constraints (timing constraints, and placement and/or area constraints).

Understand Signal Pipelining and Synchronization
To understand the nature of FIFO designs, it is important to understand how pipelining is
used to maximize performance and implement synchronization logic for clock-domain
crossing. Data written into the write interface may take multiple clock cycles before it can
be accessed on the read interface.

Synchronization Considerations

FIFOs with independent write and read clocks require that interface signals be used only in
their respective clock domains. The independent clocks FIFO handles all synchronization
requirements, enabling the user to cross between two clock domains that have no
relationship in frequency or phase.

Important: FIFO Full and Empty flags must be used to guarantee proper behavior.

Figure 5-1 shows the signals with respect to their clock domains. All signals are
synchronous to a specific clock, with the exception of RST, which performs an
asynchronous reset of the entire FIFO.

http://www.xilinx.com

100 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

.

For write operations, the write enable signal (WR_EN) and data input (DIN) are
synchronous to WR_CLK. For read operations, the read enable (RD_EN) and data output
(DOUT) are synchronous to RD_CLK. All status outputs are synchronous to their respective
clock domains and can only be used in that clock domain. The performance of the FIFO can
be measured by independently constraining the clock period for the WR_CLK and RD_CLK
input signals.

The interface signals are evaluated on their rising clock edge (WR_CLK and RD_CLK). They
can be made falling-edge active (relative to the clock source) by inserting an inverter
between the clock source and the FIFO clock inputs. This inverter is absorbed into the
internal FIFO control logic and does not cause a decrease in performance or increase in
logic utilization.

Initializing the FIFO Generator
When designing with the built-in FIFO or common clock shift register FIFO, the FIFO must
be reset after the FPGA is configured and before operation begins. An asynchronous reset
pin (RST) is provided, which is an asynchronous reset that clears the internal counters and
output registers.

For FIFOs implemented with block RAM or distributed RAM, a reset is not required, and
the input pin is optional. For common clock configurations, users have the option of
asynchronous or synchronous reset. For independent clock configurations, users have the
option of asynchronous reset (RST) or synchronous reset (WR_RST/RD_RST) with respect
to respective clock domains.

When asynchronous reset is implemented (Enable Reset Synchronization option is
selected), it is synchronized to the clock domain in which it is used to ensure that the FIFO
initializes to a known state. This synchronization logic allows for proper reset timing of the
core logic, avoiding glitches and metastable behavior. The reset pulse and synchronization
delay requirements are dependent on the FIFO implementation types.

X-Ref Target - Figure 5-1

Figure 5-1: FIFO with Independent Clocks: Write and Read Clock Domains

Note: Optional ports represented in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

WR_RST

PROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

RD_RST

PROG_EMPTY_THRESH

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 101
UG175 April 24, 2012

When WR_RST/RD_RST is implemented (Enable Reset Synchronization option is not
selected), the WR_RST/RD_RST is treated as a synchronous reset to the respective clock
domain. The write clock domain remains in reset state as long as WR_RST is asserted, and
the read clock domain remains in reset state as long as RD_RST is asserted. See Reset
Behavior, page 129.

FIFO Implementations
Each FIFO configuration has a set of allowable features, as defined in Table 2-3, page 29.

Independent Clocks: Block RAM and Distributed RAM
Figure 5-2 illustrates the functional implementation of a FIFO configured with
independent clocks. This implementation uses block RAM or distributed RAM for

http://www.xilinx.com

102 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

memory, counters for write and read pointers, conversions between binary and Gray code
for synchronization across clock domains, and logic for calculating the status flags.

X-Ref Target - Figure 5-2

Figure 5-2: Functional Implementation of a FIFO with Independent Clock Domains

Write Flag
Logic

Read Counter

Gray to Binary
Converters

Read Flag
Logic

Binary to Gray
Converters

OPTIONAL:
First Word Fall
Through Logic

Write Counter

Binary to Gray
Converter

Gray to Binary
Converter

WR_EN

DIN

DOUT

RD_EN

FULL

ALMOST_FULL

PROG_FULL

WR_DATA_COUNT

WRITE CLOCK DOMAIN READ CLOCK DOMAIN

WRITE PORT READ PORT

ADDRB

DOUTADDRA

DIN

WE

MEMORY

RD_DATA_COUNT

PROG_EMPTY

ALMOST_EMPTY

EMPTY

Write Counter

Read Counter

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 103
UG175 April 24, 2012

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. Table 5-1 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information refer to the Synchronization Considerations, page 99.

Independent Clocks: Built-in FIFO
Figure 5-3 illustrates the functional implementation of FIFO configured with independent
clocks using the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO primitive.
This design implementation consists of cascaded built-in FIFO primitives and
handshaking logic. The number of built-in primitives depends on the FIFO width and
depth requested.

The Virtex-4 FPGA built-in FIFO implementation allows generation of a single primitive.
The generated core includes a FIFO flag patch (defined in “Solution 1:
Synchronous/Asynchronous Clock Work-Arounds,” in the Virtex-4 FPGA User Guide).

Table 5-1: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

ALMOST_FULL ALMOST_EMPTY

PROG_FULL PROG_EMPTY

WR_ACK VALID

OVERFLOW UNDERFLOW

WR_DATA_COUNT RD_DATA_COUNT

WR_RST SBITERR

INJECTSBITERR DBITERR

INJECTDBITERR RD_RST

http://www.xilinx.com

104 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. Table 5-2 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information, see Synchronization Considerations, page 99.

For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO configurations, the built-
in ECC feature in the FIFO macro is provided. For more information, see “Built-in Error
Correction Checking,” page 127.

Note: When the ECC option is selected, the number of Built-in FIFO primitives in depth and all the
output latency will be different. For more information on latency, see Latency, page 139.

For example, if user depth is 4096, user width is 9 and ECC is not selected, then the number of Built-

X-Ref Target - Figure 5-3

Figure 5-3: Functional Implementation of Built-in FIFO

Table 5-2: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

PROG_FULL PROG_EMPTY

WR_ACK VALID

OVERFLOW UNDERFLOW

INJECTSBITERR SBITERR

INJECTDBITERR DBITERR

WRITE DOMAIN READ DOMAIN

DOUT

Logic For
Optional Flags:
Write Domain

DIN

WE RE
WR_EN

DIN

WR_ACK

OVERFLOW

FULL

Logic For
Optional Flags:
Read Domain

EMPTY

RD_EN

DOUT
Built-In
FIFO

UNDERFLOW

VALID

PROG_FULL PROG_EMPTY
Cascaded Built-in FIFO Primitives

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 105
UG175 April 24, 2012

in FIFO primitives in depth is 1. However, if ECC is selected for the same configuration, then the
number of Built-in FIFO primitives in depth is 4092/512 = 8.

Common Clock: Built-in FIFO
The FIFO Generator supports FIFO cores using the built-in FIFO primitive with a common
clock. This provides users the ability to use the built-in FIFO, while requiring only a single
clock interface. The behavior of the common clock configuration with built-in FIFO is
identical to the independent clock configuration with built-in FIFO, except all operations
are in relation to the common clock (CLK). See Independent Clocks: Built-in FIFO,
page 103, for more information.

Common Clock FIFO: Block RAM and Distributed RAM
Figure 5-4 illustrates the functional implementation of a FIFO configured with a common
clock using block RAM or distributed RAM for memory. All signals are synchronous to a
single clock input (CLK). This design implements counters for write and read pointers and
logic for calculating the status flags. An optional synchronous (SRST) or asynchronous
(RST) reset signal is also available.
X-Ref Target - Figure 5-4

Figure 5-4: Functional Implementation of a Common Clock FIFO using
Block RAM or Distributed RAM

Flag
Logic

MEMORY

WRITE PORT READ PORT

ADDRA

DIN

WE

ADDRB

DOUT

Write
Counter

DIN

WR_EN

Read
Counter

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

106 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Common Clock FIFO: Shift Registers
Figure 5-5 illustrates the functional implementation of a FIFO configured with a common
clock using shift registers for memory. All operations are synchronous to the same clock
input (CLK). This design implements a single up/down counter for both the write and
read pointers and logic for calculating the status flags.

FIFO Usage and Control

Write Operation
This section describes the behavior of a FIFO write operation and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus (DIN) and write acknowledge (WR_ACK) is asserted. If the FIFO is
continuously written to without being read, it fills with data. Write operations are only
successful when the FIFO is not full. When the FIFO is full and a write is initiated, the
request is ignored, the overflow flag is asserted and there is no change in the state of the
FIFO (overflowing the FIFO is non-destructive).

ALMOST_FULL and FULL Flags

Note: The Built-in FIFO for Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs do not support
the ALMOST_FULL flag.

The almost full flag (ALMOST_FULL) indicates that only one more write can be performed
before FULL is asserted. This flag is active high and synchronous to the write clock
(WR_CLK).

X-Ref Target - Figure 5-5

Figure 5-5: Functional Implementation of a Common Clock FIFO using Shift
Registers

WRITE PORT READ PORT

Pointer
Counter

MEMORY

ADDR

Flag
Logic

DIN

WE RE

DOUT
DIN

WR_EN

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 107
UG175 April 24, 2012

The full flag (FULL) indicates that the FIFO is full and no more writes can be performed
until data is read out. This flag is active high and synchronous to the write clock (WR_CLK).
If a write is initiated when FULL is asserted, the write request is ignored and OVERFLOW is
asserted.

Important: For the Virtex-4 FPGA built-in FIFO implementation, the Full signal has an
extra cycle of latency. Use Write Acknowledge to verify success or Programmable Full for
an earlier indication.

Example Operation

Figure 5-6 shows a typical write operation. The user asserts WR_EN, causing a write
operation to occur on the next rising edge of the WR_CLK. Because the FIFO is not full,
WR_ACK is asserted, acknowledging a successful write operation. When only one
additional word can be written into the FIFO, the FIFO asserts the ALMOST_FULL flag.
When ALMOST_FULL is asserted, one additional write causes the FIFO to assert FULL.
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. Once the user performs one or more read
operations, the FIFO deasserts FULL, and data can successfully be written to the FIFO, as is
indicated by the assertion of WR_ACK and deassertion of OVERFLOW.

Note: The Virtex-4 FPGA built-in FIFO implementation shows an extra cycle of latency on the FULL
flag.

Read Operation
This section describes the behavior of a FIFO read operation and the associated status
flags. When read enable is asserted and the FIFO is not empty, data is read from the FIFO
on the output bus (DOUT), and the valid flag (VALID) is asserted. If the FIFO is
continuously read without being written, the FIFO empties. Read operations are successful
when the FIFO is not empty. When the FIFO is empty and a read is requested, the read
operation is ignored, the underflow flag is asserted and there is no change in the state of
the FIFO (underflowing the FIFO is non-destructive).

ALMOST_EMPTY and EMPTY Flags

Note: The Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs built-in FIFO does not support
the ALMOST_EMPTY flag.

The almost empty flag (ALMOST_EMPTY) indicates that the FIFO will be empty after one
more read operation. This flag is active high and synchronous to RD_CLK. This flag is
asserted when the FIFO has one remaining word that can be read.

X-Ref Target - Figure 5-6

Figure 5-6: Write Operation for a FIFO with Independent Clocks

WR_CLK

WR_EN

FULL

ALMOST_FULL

WR_ACK

OVERFLOW

DIN D1 D2 D3 D4 D5 D12 D13

http://www.xilinx.com

108 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

The empty flag (EMPTY) indicates that the FIFO is empty and no more reads can be
performed until data is written into the FIFO. This flag is active high and synchronous to
the read clock (RD_CLK). If a read is initiated when EMPTY is asserted, the request is
ignored and UNDERFLOW is asserted.

Common Clock Note

When write and read operations occur simultaneously while EMPTY is asserted, the write
operation is accepted and the read operation is ignored. On the next clock cycle, EMPTY is
deasserted and UNDERFLOW is asserted.

Modes of Read Operation

The FIFO Generator supports two modes of read options, standard read operation and
first-word fall-through (FWFT) read operation. The standard read operation provides the
user data on the cycle after it was requested. The FWFT read operation provides the user
data on the same cycle in which it is requested.

Table 5-3 details the supported implementations for FWFT.

Standard FIFO Read Operation

For a standard FIFO read operation, after read enable is asserted and if the FIFO is not
empty, the next data stored in the FIFO is driven on the output bus (DOUT) and the valid
flag (VALID) is asserted.

Figure 5-7 shows a standard read access. Once the user writes at least one word into the
FIFO, EMPTY is deasserted — indicating data is available to be read. The user asserts
RD_EN, causing a read operation to occur on the next rising edge of RD_CLK. The FIFO
outputs the next available word on DOUT and asserts VALID, indicating a successful read
operation. When the last data word is read from the FIFO, the FIFO asserts EMPTY. If the
user continues to assert RD_EN while EMPTY is asserted, the read request is ignored, VALID
is deasserted, and UNDERFLOW is asserted. Once the user performs a write operation, the
FIFO deasserts EMPTY, allowing the user to resume valid read operations, as indicated by
the assertion of VALID and deassertion of UNDERFLOW.

Table 5-3: Implementation-Specific Support for First-Word Fall-Through

FIFO Implementation FWFT Support

Independent Clocks

Block RAM

Distributed RAM

Built-in (1)

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in (1)

Notes:
1. Only supported in Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 109
UG175 April 24, 2012

First-Word Fall-Through FIFO Read Operation

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in
the FIFO, the first word falls through the FIFO and appears automatically on the output
bus (DOUT). Once the first word appears on DOUT, EMPTY is deasserted indicating one or
more readable words in the FIFO, and VALID is asserted, indicating a valid word is present
on DOUT.

Figure 5-8 shows a FWFT read access. Initially, the FIFO is not empty, the next available
data word is placed on the output bus (DOUT), and VALID is asserted. When the user
asserts RD_EN, the next rising clock edge of RD_CLK places the next data word onto DOUT.
After the last data word has been placed on DOUT, an additional read request by the user
causes the data on DOUT to become invalid, as indicated by the deassertion of VALID and
the assertion of EMPTY. Any further attempts to read from the FIFO results in an underflow
condition.

Unlike the standard read mode, the first-word-fall-through empty flag is asserted after the
last data is read from the FIFO. When EMPTY is asserted, VALID is deasserted. In the
standard read mode, when EMPTY is asserted, VALID is asserted for 1 clock cycle. The
FWFT feature also increases the effective read depth of the FIFO by two read words.

The FWFT feature adds two clock cycle latency to the deassertion of empty, when the first
data is written into a empty FIFO.

Note: For every write operation, an equal number of read operations is required to empty
the FIFO – this is true for both the first-word-fall-through and standard FIFO.

X-Ref Target - Figure 5-7

Figure 5-7: Standard Read Operation for a FIFO with Independent Clocks

X-Ref Target - Figure 5-8

Figure 5-8: FWFT Read Operation for a FIFO with Independent Clocks

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

http://www.xilinx.com

110 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Common Clock FIFO, Simultaneous Read and Write Operation

Figure 5-9 shows a typical write and read operation. A write is issued to the FIFO, resulting
in the deassertion of the EMPTY flag. A simultaneous write and read is then issued,
resulting in no change in the status flags. Once two or more words are present in the FIFO,
the ALMOST_EMPTY flag is deasserted. Write requests are then issued to the FIFO, resulting
in the assertion of ALMOST_FULL when the FIFO can only accept one more write (without
a read). A simultaneous write and read is then issued, resulting in no change in the status
flags. Finally one additional write without a read results in the FIFO asserting FULL,
indicating no further data can be written until a read request is issued.

Handshaking Flags
Handshaking flags (valid, underflow, write acknowledge and overflow) are supported to
provide additional information regarding the status of the write and read operations. The
handshaking flags are optional, and can be configured as active high or active low through
the CORE Generator GUI (see Handshaking Options in Chapter 4 for more information).
These flags (configured as active high) are illustrated in Figure 5-10.

Write Acknowledge

The write acknowledge flag (WR_ACK) is asserted at the completion of each successful
write operation and indicates that the data on the DIN port has been stored in the FIFO.
This flag is synchronous to the write clock (WR_CLK).

Valid

The operation of the valid flag (VALID) is dependent on the read mode of the FIFO. This
flag is synchronous to the read clock (RD_CLK).

Standard FIFO Read Operation

For standard read operation, the VALID flag is asserted at the rising edge of RD_CLK for
each successful read operation, and indicates that the data on the DOUT bus is valid. When
a read request is unsuccessful (when the FIFO is empty), VALID is not asserted.

FWFT FIFO Read Operation

For FWFT read operation, the VALID flag indicates the data on the output bus (DOUT) is
valid for the current cycle. A read request does not have to happen for data to be present
and valid, as the first-word fall-through logic automatically places the next data to be read

X-Ref Target - Figure 5-9

Figure 5-9: Write and Read Operation for a FIFO with Common Clocks

CLK

WR_EN

EMPTY

RD_EN

ALMOST_EMPTY

FULL

ALMOST_FULL

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 111
UG175 April 24, 2012

on the DOUT bus. VALID is asserted if there is one or more words in the FIFO. VALID is
deasserted when there are no more words in the FIFO.

Example Operation

Figure 5-10 illustrates the behavior of the FIFO flags. On the write interface, FULL is not
asserted and writes to the FIFO are successful (as indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. In standard FIFO operation, VALID is asserted and
DOUT is updated on the clock cycle following the read request. In FWFT operation, VALID
is asserted and DOUT is updated prior to a read request being issued. When a read request
is issued while EMPTY is asserted, VALID is deasserted and UNDERFLOW is asserted,
indicating an underflow condition.

http://www.xilinx.com

112 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Underflow

The underflow flag (UNDERFLOW) is used to indicate that a read operation is unsuccessful.
This occurs when a read is initiated and the FIFO is empty. This flag is synchronous with
the read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it
is non-destructive).

X-Ref Target - Figure 5-10

Figure 5-10: Handshaking Signals for a FIFO with Independent Clocks

D1 D3D2

Write Interface

WR_EN

DIN

WR_ACK

WR_CLK

FULL

OVERFLOW

D1 D3D2

FWFT Read Interface

RD_CLK

RD_EN

EMPTY

UNDERFLOW

VALID

DOUT

D1 D3D2

Standard Read Interface

VALID

RD_CLK

RD_EN

EMPTY

UNDERFLOW

DOUT

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 113
UG175 April 24, 2012

Overflow

The overflow flag (OVERFLOW) is used to indicate that a write operation is unsuccessful.
This flag is asserted when a write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

Example Operation

Figure 5-11 illustrates the Handshaking flags. On the write interface, FULL is deasserted
and therefore writes to the FIFO are successful (indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. Following a read request, VALID is asserted and
DOUT is updated. When a read request is issued while EMPTY is asserted, VALID is
deasserted and UNDERFLOW is asserted, indicating an underflow condition.

Programmable Flags
The FIFO supports programmable flags to indicate that the FIFO has reached a user-
defined fill level.

• Programmable full (PROG_FULL) indicates that the FIFO has reached a user-defined
full threshold.

• Programmable empty (PROG_EMPTY) indicates that the FIFO has reached a user-
defined empty threshold.

X-Ref Target - Figure 5-11

Figure 5-11: Handshaking Signals for a FIFO with Common Clocks

D1

WR_EN

DIN

WR_ACK

VALID

CLK

CLK

RD_EN

FULL

EMPTY

OVERFLOW

UNDERFLOW

D1DOUT D3

D3D2

D2

Write Interface

Read Interface

http://www.xilinx.com

114 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

For these thresholds, the user can set a constant value or choose to have dedicated input
ports, enabling the thresholds to change dynamically in circuit. Hysteresis is also
optionally supported, by providing unique assert and negate values for each flag. Detailed
information about these options are provided below. For information about the latency
behavior of the programmable flags, see “Latency,” page 139.

Programmable Full

The FIFO Generator supports four ways to define the programmable full threshold:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 3-5).

The programmable full flag (PROG_FULL) is asserted when the number of entries in the
FIFO is greater than or equal to the user-defined assert threshold. When the programmable
full flag is asserted, the FIFO can continue to be written to until the full flag (FULL) is
asserted. If the number of words in the FIFO is less than the negate threshold, the flag is
deasserted.

Note: If a write operation occurs on a rising clock edge that causes the number of words to meet or
exceed the programmable full threshold, then the programmable full flag will assert on the next rising
clock edge. The deassertion of the programmable full flag has a longer delay, and depends on the
relationship between the write and read clocks.

Programmable Full: Single Threshold

This option enables the user to set a single threshold value for the assertion and
deassertion of PROG_FULL. When the number of entries in the FIFO is greater than or
equal to the threshold value, PROG_FULL is asserted. The deassertion behavior differs
between built-in and non built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO has to be less than the threshold value
-1 before PROG_FULL is deasserted. For non built-in FIFOs, if the number of words in the
FIFO is less than the negate threshold, the flag is deasserted.

Two options are available to implement this threshold:

• Single threshold constant. User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port (non-built-in FIFOs only). User specifies
the threshold value through an input port (PROG_FULL_THRESH) on the core. This
input can be changed while the FIFO is in reset, providing the user the flexibility to
change the programmable full threshold in-circuit without re-generating the core.

Note: See the CORE Generator GUI screen for valid ranges for each threshold.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 115
UG175 April 24, 2012

Figure 5-12 shows the programmable full flag with a single threshold for a non-built-in
FIFO. The user writes to the FIFO until there are seven words in the FIFO. Because the
programmable full threshold is set to seven, the FIFO asserts PROG_FULL once seven
words are written into the FIFO. Note that both write data count (WR_DATA_COUNT) and
PROG_FULL have one clock cycle of delay. Once the FIFO has six or fewer words in the
FIFO, PROG_FULL is deasserted.

Programmable Full: Assert and Negate Thresholds

This option enables the user to set separate values for the assertion and deassertion of
PROG_FULL. When the number of entries in the FIFO is greater than or equal to the assert
value, PROG_FULL is asserted. When the number of entries in the FIFO is less than the
negate value, PROG_FULL is deasserted. Note that this feature is not available for built-in
FIFOs.

Two options are available to implement these thresholds:

• Assert and negate threshold constants: User specifies the threshold values through the
CORE Generator GUI. Once the core is generated, these values can only be changed
by re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports: User specifies the threshold
values through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable full assert (PROG_FULL_THRESH_ASSERT) and negate
(PROG_FULL_THRESH_NEGATE) thresholds in-circuit without re-generating the core.

Note: The full assert value must be larger than the full negate value. Refer to the CORE
Generator GUI for valid ranges for each threshold.

X-Ref Target - Figure 5-12

Figure 5-12: Programmable Full Single Threshold: Threshold Set to 7

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

5 74 6 8 67

http://www.xilinx.com

116 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Figure 5-13 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set
to 10, the FIFO then asserts PROG_FULL. The negate threshold is set to seven, and the FIFO
deasserts PROG_FULL once six words or fewer are in the FIFO. Both write data count
(WR_DATA_COUNT) and PROG_FULL have one clock cycle of delay.

Programmable Full Threshold Range Restrictions

The programmable full threshold ranges depend on several features that dictate the way
the FIFO is implemented, and include the following features:

• FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or
Independent Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA Built-in FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges. Note that for the Common
or Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth, due to the core implementation. If a
wider threshold range is required, use the Common or Independent Clock Block RAM
implementation type.

Note: Refer to the CORE Generator GUI for valid ranges for each threshold. To avoid unexpected
behavior, it is not recommended to give out-of-range threshold values.

Programmable Empty

The FIFO Generator supports four ways to define the programmable empty thresholds:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 3-5).

The programmable empty flag (PROG_EMPTY) is asserted when the number of entries in
the FIFO is less than or equal to the user-defined assert threshold. If the number of words
in the FIFO is greater than the negate threshold, the flag is deasserted.

X-Ref Target - Figure 5-13

Figure 5-13: Programmable Full with Assert and Negate Thresholds: Assert Set to 10
and Negate Set to 7

9 98

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

7810 6

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 117
UG175 April 24, 2012

Note: If a read operation occurs on a rising clock edge that causes the number of words in the FIFO
to be equal to or less than the programmable empty threshold, then the programmable empty flag will
assert on the next rising clock edge. The deassertion of the programmable empty flag has a longer
delay, and depends on the read and write clocks.

Programmable Empty: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the threshold
value, PROG_EMPTY is asserted. The deassertion behavior differs between built-in and non
built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO must be greater than the threshold
value + 1 before PROG_EMPTY is deasserted. For non built-in FIFOs, if the number of
entries in the FIFO is greater than threshold value, PROG_EMPTY is deasserted.

Two options are available to implement this threshold:

• Single threshold constant: User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port: User specifies the threshold value
through an input port (PROG_EMPTY_THRESH) on the core. This input can be changed
while the FIFO is in reset, providing the flexibility to change the programmable empty
threshold in-circuit without re-generating the core.

Note: See the CORE Generator GUI for valid ranges for each threshold.

Figure 5-14 shows the programmable empty flag with a single threshold for a non-built-in
FIFO. The user writes to the FIFO until there are five words in the FIFO. Because the
programmable empty threshold is set to four, PROG_EMPTY is asserted until more than
four words are present in the FIFO. Once five words (or more) are present in the FIFO,
PROG_EMPTY is deasserted. Both read data count (RD_DATA_COUNT) and PROG_EMPTY
have one clock cycle of delay.

Programmable Empty: Assert and Negate Thresholds

This option lets the user set separate values for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the assert
value, PROG_EMPTY is asserted. When the number of entries in the FIFO is greater than the
negate value, PROG_EMPTY is deasserted. This feature is not available for built-in FIFOs.

X-Ref Target - Figure 5-14

Figure 5-14: Programmable Empty with Single Threshold: Threshold Set to 4

RD_CLK

RD_DATA_COUNT

VALID

RD_EN

44 5 36 5

PROG_EMPTY

7

http://www.xilinx.com

118 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Two options are available to implement these thresholds.

• Assert and negate threshold constants. The threshold values are specified through
the CORE Generator GUI. Once the core is generated, these values can only be
changed by re-generating the core. This option consumes fewer resources than the
assert and negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports. The threshold values are
specified through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable empty assert (PROG_EMPTY_THRESH_ASSERT) and negate
(PROG_EMPTY_THRESH_NEGATE) thresholds in-circuit without regenerating the core.

Note: The empty assert value must be less than the empty negate value. Refer to the CORE
Generator GUI for valid ranges for each threshold.

Figure 5-15 shows the programmable empty flag with assert and negate thresholds. The
user writes to the FIFO until there are eleven words in the FIFO; because the
programmable empty deassert value is set to ten, PROG_EMPTY is deasserted when more
than ten words are in the FIFO. Once the FIFO contains less than or equal to the
programmable empty negate value (set to seven), PROG_EMPTY is asserted. Both read data
count (RD_DATA_COUNT) and PROG_EMPTY have one clock cycle of delay.

Programmable Empty Threshold Range Restrictions

The programmable empty threshold ranges depend on several features that dictate the
way the FIFO is implemented, including the following:

• FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or
Independent Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (Kintex-7, Virtex-7, Virtex-6, Virtex-5, and Virtex-4
FPGA Built-in FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges. Note that for Common or
Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth due to the core implementation. If a wider
threshold range is needed, use the Common or Independent Clock Block RAM
implementation type.

Note: Refer to the CORE Generator GUI for valid ranges for each threshold. To avoid unexpected
behavior, it is not recommended to give out-of-range threshold values.

X-Ref Target - Figure 5-15

Figure 5-15: Programmable Empty with Assert and Negate Thresholds:
Assert Set to 7 and Negate Set to 10

RD_CLK

RD_DATA_COUNT

PROG_EMPTY

RD_EN

8 9 1010 711 9 8

VALID

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 119
UG175 April 24, 2012

Data Counts
DATA_COUNT tracks the number of words in the FIFO. You can specify the width of the
data count bus with a maximum width of log2 (FIFO depth). If the width specified is
smaller than the maximum allowable width, the bus is truncated by removing the lower
bits. These signals are optional outputs of the FIFO Generator, and are enabled through the
CORE Generator GUI. Table 5-4 identifies data count support for each FIFO
implementation. For information about the latency behavior of data count flags, see
“Latency,” page 139.

Data Count (Common Clock FIFO Only)

Data Count output (DATA_COUNT) accurately reports the number of words available in a
Common Clock FIFO. You can specify the width of the data count bus with a maximum
width of log2(depth). If the width specified is smaller than the maximum allowable width,
the bus is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO
with a quarter resolution, providing the status of the contents of the FIFO for read and
write operations.

Note: If a read or write operation occurs on a rising edge of CLK, the data count port is
updated at the same rising edge of CLK.

Read Data Count (Independent Clock FIFO Only)

Read data count (RD_DATA_COUNT) pessimistically reports the number of words available
for reading. The count is guaranteed to never over-report the number of words available in
the FIFO (although it may temporarily under-report the number of words available) to
ensure that the user design never underflows the FIFO. The user can specify the width of
the read data count bus with a maximum width of log2 (read depth). If the width specified
is smaller than the maximum allowable width, the bus is truncated with the lower bits
removed.

For example, the user can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO,
with a quarter resolution. This provides a status of the contents of the FIFO for the read
clock domain.

Note: If a read operation occurs on a rising clock edge of RD_CLK, that read is reflected on
the RD_DATA_COUNT signal following the next rising clock edge. A write operation on the

Table 5-4: Implementation-specific Support for Data Counts

FIFO Implementation Data Count Support

Independent Clocks

Block RAM

Distributed RAM

Built-in

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in

http://www.xilinx.com

120 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

WR_CLK clock domain may take a number of clock cycles before being reflected in the
RD_DATA_COUNT.

Write Data Count (Independent Clock FIFO Only)

Write data count (WR_DATA_COUNT) pessimistically reports the number of words written
into the FIFO. The count is guaranteed to never under-report the number of words in the
FIFO (although it may temporarily over-report the number of words present) to ensure
that the user never overflows the FIFO. The user can specify the width of the write data
count bus with a maximum width of log2 (write depth). If the width specified is smaller
than the maximum allowable width, the bus is truncated with the lower bits removed.

For example, you can only use two bits out of a maximum allowable three bits (provided a
FIFO depth of eight). These two bits indicate the number of words in the FIFO, with a
quarter resolution. This provides a status of the contents of the FIFO for the write clock
domain.

Note: If a write operation occurs on a rising clock edge of WR_CLK, that write will be
reflected on the WR_DATA_COUNT signal following the next rising clock edge. A read
operation, which occurs on the RD_CLK clock domain, may take a number of clock cycles
before being reflected in the WR_DATA_COUNT.

First-Word Fall-Through Data Count

By providing the capability to read the next data word before requesting it, first-word fall-
through (FWFT) implementations increase the depth of the FIFO by 2 read words. Using
this configuration, the FIFO Generator enables the user to generate data count in two ways:

• Approximate Data Count

• More Accurate Data Count (Use Extra Logic)

Approximate Data Count

Approximate Data Count behavior is the default option in the CORE Generator GUI for
independent clock block RAM and distributed RAM FIFOs. This feature is not available for
common clock FIFOs. The width of the WR_DATA_COUNT and RD_DATA_COUNT is
identical to the non first-word-fall-through configurations (log2 (write depth) and log2
(read depth), respectively) but the data counts reported is an approximation because the
actual full depth of the FIFO is not supported.

Using this option, you can use specific bits in WR_DATA_COUNT and RD_DATA_COUNT to
approximately indicate the status of the FIFO, for example, half full, quarter full, and so
forth.

For example, for a FIFO with a depth of 16, symmetric read and write port widths, and the
first-word-fall-through option selected, the actual FIFO depth increases from 15 to 17.
When using approximate data count, the width of WR_DATA_COUNT and RD_DATA_COUNT
is 4 bits, with a maximum of 15. For this option, you can use the assertion of the MSB bit of
the data count to indicate that the FIFO is approximately half full.

More Accurate Data Count (Use Extra Logic)

This feature is enabled when Use Extra Logic for More Accurate Data Counts is selected in
the CORE Generator GUI. In this configuration, the width of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT is log2(write depth)+1, log2(read depth)+1, and
log2(depth)+1, respectively to accommodate the increase in depth in the first-word-fall-
through case and to ensure accurate data count is provided.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 121
UG175 April 24, 2012

Note that when using this option, you cannot use any one bit of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT to indicate the status of the FIFO, for example,
approximately half full, quarter full, and so forth.

For example, for an independent FIFO with a depth of 16, symmetric read and write port
widths, and the first-word-fall-through option selected, the actual FIFO depth increases
from 15 to 17. When using accurate data count, the width of the WR_DATA_COUNT and
RD_DATA_COUNT is 5 bits, with a maximum of 31. For this option, you must use the
assertion of both the MSB and MSB-1 bit of the data count to indicate that the FIFO is at
least half full.

Data Count Behavior

For FWFT implementations using More Accurate Data Counts (Use Extra Logic),
DATA_COUNT is guaranteed to be accurate when words are present in the FIFO, with the
exception of when its near empty or almost empty or when initial writes occur on an
empty FIFO. In these scenarios, DATA_COUNT may be incorrect on up to two words.

Table 5-5 defines the value of DATA_COUNT when FIFO is empty.

From the point-of-view of the write interface, DATA_COUNT is always accurate, reporting
the first word immediately once its written to the FIFO. However, from the point-of-view
of the read interface, the DATA_COUNT output may over-report by up to two words until
ALMOST_EMPTY and EMPTY have both deasserted. This is due to the latency of EMPTY
deassertion in the first-word-fall-through FIFO (see Table 5-17). This latency allows
DATA_COUNT to reflect written words which may not yet be available for reading.

From the point-of-view of the read interface, the data count starts to transition from over-
reporting to accurate-reporting at the deassertion to empty. This transition completes after
ALMOST_EMPTY deasserts. Before ALMOST_EMPTY deasserts, the DATA_COUNT signal may
exhibit the following atypical behaviors:

• From the read-interface perspective, DATA_COUNT may over-report up to two words.

Write Data Count Behavior

Even for FWFT implementations using More Accurate Data Counts (Use Extra Logic),
WR_DATA_COUNT will still pessimistically report the number of words written into the
FIFO. However, the addition of this feature will cause WR_DATA_COUNT to further over-
report up to two read words (and 1 to 16 write words, depending on read and write port
aspect ratio) when the FIFO is at or near empty or almost empty.

Table 5-5 defines the value of WR_DATA_COUNT when the FIFO is empty.

The WR_DATA_COUNT starts to transition out of over-reporting two extra read words at the
deassertion of EMPTY. This transition completes several clock cycles after ALMOST_EMPTY
deasserts. Note that prior to the transition period, WR_DATA_COUNT will always over-
report by at least two read words. During the transition period, the WR_DATA_COUNT
signal may exhibit the following strange behaviors:

• WR_DATA_COUNT may decrement although no read operation has occurred.

• WR_DATA_COUNT may not increment as expected due to a write operation.

http://www.xilinx.com

122 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Note: During reset, WR_DATA_COUNT and DATA_COUNT value is set to 0.

The RD_DATA_COUNT value at empty (when no write is performed) is 0 with or without
Use Extra Logic for all write depth to read depth ratios.

Example Operation

Figure 5-16 shows write and read data counts. When WR_EN is asserted and FULL is
deasserted, WR_DATA_COUNT increments. Similarly, when RD_EN is asserted and EMPTY is
deasserted, RD_DATA_COUNT decrements.

Note: In the first part of Figure 5-16, a successful write operation occurs on the third rising
clock edge, and is not reflected on WR_DATA_COUNT until the next full clock cycle is
complete. Similarly, RD_DATA_COUNT transitions one full clock cycle after a successful
read operation.

Table 5-5: Empty FIFO WR_DATA_COUNT/DATA_COUNT Value

Write Depth to
Read Depth Ratio

Approximate
WR_DATA_COUNT

More Accurate
WR_DATA_COUNT

More Accurate
DATA_COUNT

1:1 0 2 2

1:2 0 1 N/A

1:4 0 0 N/A

1:8 0 0 N/A

2:1 0 4 N/A

4:1 0 8 N/A

8:1 0 16 N/A

X-Ref Target - Figure 5-16

Figure 5-16: Write and Read Data Counts for FIFO with Independent Clocks

WR_CLK

WR_DATA_COUNT

WR_EN

12 1413 15

RD_CLK

RD_DATA_COUNT

RD_EN

3 12 0

FULL

EMPTY

Write Interface

Read Interface

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 123
UG175 April 24, 2012

Non-symmetric Aspect Ratios
Table 5-6 identifies support for non-symmetric aspect ratios.

This feature is supported for FIFOs configured with independent clocks implemented with
block RAM. Non-symmetric aspect ratios allow the input and output depths of the FIFO to
be different. The following write-to-read aspect ratios are supported: 1:8, 1:4, 1:2, 1:1, 2:1,
4:1, 8:1. This feature is enabled by selecting unique write and read widths when
customizing the FIFO using the CORE Generator. By default, the write and read widths are
set to the same value (providing a 1:1 aspect ratio); but any ratio between 1:8 to 8:1 is
supported, and the output depth of the FIFO is automatically calculated from the input
depth and the write and read widths.

For non-symmetric aspect ratios, the full and empty flags are active only when one
complete word can be written or read. The FIFO does not allow partial words to be
accessed. For example, assuming a full FIFO, if the write width is 8 bits and read width is
2 bits, the user would have to complete four valid read operations before full deasserts and
a write operation accepted. Write data count shows the number of FIFO words according
to the write port ratio, and read data count shows the number of FIFO words according to
the read port ratio.

Note: For non-symmetric aspect ratios where the write width is smaller than the read width (1:8, 1:4,
1:2), the most significant bits are read first (refer to Figure 5-17 and Figure 5-18).

Table 5-6: Implementation-specific Support for Non-symmetric Aspect Ratios

FIFO Implementation
Non-symmetric Aspect

Ratios Support

Independent Clocks

Block RAM

Distributed RAM

Built-in

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in

http://www.xilinx.com

124 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Figure 5-17 is an example of a FIFO with a 1:4 aspect ratio (write width = 2, read width = 8).
In this figure, four consecutive write operations are performed before a read operation can
be performed. The first write operation is 01, followed by 00, 11, and finally 10. The
memory is filling up from the left to the right (MSB to LSB). When a read operation is
performed, the received data is 01_00_11_10.

Figure 5-18 shows DIN, DOUT and the handshaking signals for a FIFO with a 1:4 aspect
ratio. After four words are written into the FIFO, EMPTY is deasserted. Then after a single
read operation, EMPTY is asserted again.

X-Ref Target - Figure 5-17

Figure 5-17: 1:4 Aspect Ratio: Data Ordering

X-Ref Target - Figure 5-18

Figure 5-18: 1:4 Aspect Ratio: Status Flag Behavior

Read
Operation

110001

0001

01

MSB LSB

01 00 11 1001

00

11

10

Time

Write
Operation

10110001

WR_CLK

DIN[1:0]

WR_EN

231 0

RD_CLK

DOUT[7:0]

RD_EN

EMPTY

4E

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 125
UG175 April 24, 2012

Figure 5-19 shows a FIFO with an aspect ratio of 4:1 (write width of 8, read width of 2). In
this example, a single write operation is performed, after which four read operations are
executed. The write operation is 11_00_01_11. When a read operation is performed, the
data is received left to right (MSB to LSB). As shown, the first read results in data of 11,
followed by 00, 01, and then 11.

Figure 5-20 shows DIN, DOUT, and the handshaking signals for a FIFO with an aspect ratio
of 4:1. After a single write, the FIFO deasserts EMPTY. Because no other writes occur, the
FIFO reasserts empty after four reads.

Non-symmetric Aspect Ratio and First-Word Fall-Through

A FWFT FIFO has 2 extra read words available on the read port when compared to a
standard FIFO. For write-to-read aspect ratios that are larger or equal to 1 (1:1, 2:1, 4:1, and
8:1), the FWFT implementation also increases the number of words that can be written into
the FIFO by depth_ratio*2 (depth_ratio = write depth / read depth). For write-to-read
aspect ratios smaller than 1 (1:2, 1:4 and 1:8), the addition of 2 extra read words only
amounts to a fraction of 1 write word. The creation of these partial words causes the
behavior of the PROG_EMPTY and WR_DATA_COUNT signals of the FIFO to differ in
behavior than as previously described.

X-Ref Target - Figure 5-19

Figure 5-19: 4:1 Aspect Ratio: Data Ordering

X-Ref Target - Figure 5-20

Figure 5-20: 4:1 Aspect Ratio: Status Flag Behavior

Read
Operation

00 01 11

01 11

11

MSB LSB

Write
Operation

11 00 01 11 11

00

01

11

Time

WR_CLK

DIN[7:0]

WR_EN

C7

RD_CLK

DOUT[1:0]

RD_EN

EMPTY

3103

http://www.xilinx.com

126 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Programmable Empty

In general, PROG_EMPTY is guaranteed to assert when the number of readable words in the
FIFO is less than or equal to the programmable empty assert threshold. However, when the
write-to-read aspect ratios are smaller than 1 (depending on the read and write clock
frequency) it is possible for PROG_EMPTY to violate this rule, but only while EMPTY is
asserted. To avoid this condition, the user should set the programmable empty assert
threshold to 3*depth_ratio*frequency_ratio (depth_ratio = write depth/read depth and
frequency_ratio = write clock frequency / read clock frequency). If the programmable
empty assert threshold is set lower than this value, the user should assume that
PROG_EMPTY may or can be asserted when EMPTY is asserted.

Write Data Count

In general, WR_DATA_COUNT pessimistically reports the number of words written into the
FIFO and is guaranteed to never under-report the number of words in the FIFO, to ensure
that the user never overflows the FIFO. However, when the write-to-read aspect ratios are
smaller than 1, if the read and write operations result in partial write words existing in the
FIFO, it is possible to under-report the number of words in the FIFO. This behavior is most
crucial when the FIFO is 1 or 2 words away from full, because in this state the
WR_DATA_COUNT is under-reporting and cannot be used to gauge if the FIFO is full. In this
configuration, you should use the FULL flag to gate any write operation to the FIFO.

Embedded Registers in Block RAM and FIFO Macros
(Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs)

The block RAM macros available in Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA, as well as built-in FIFO macros available in Kintex-7, Virtex-7, Virtex-6 and
Virtex-5 FPGA, have built-in embedded registers that can be used to pipeline data and
improve macro timing. Depending on the configuration, this feature can be leveraged to
add one additional latency to the FIFO core (DOUT bus and VALID outputs) or implement
the output registers for FWFT FIFOs. For built-in FIFOs configuration, this feature is only
available for common clock FIFOs.

Standard FIFOs

When using the embedded registers to add an output pipeline register to the standard
FIFOs, only the DOUT and VALID output ports are delayed by 1 clock cycle during a read
operation. These additional pipeline registers are always enabled, as illustrated in
Figure 5-21.
X-Ref Target - Figure 5-21

Figure 5-21: Standard Read Operation for a Block RAM or built-in FIFO
with Use Embedded Registers Enabled

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 127
UG175 April 24, 2012

Block RAM Based FWFT FIFOs

When using the embedded output registers to implement the FWFT FIFOs, the behavior of
the core is identical to the implementation without the embedded registers.

Built-in Based FWFT FIFOs (Common Clock Only)

When using the embedded output registers with a common clock built-in based FIFO with
FWFT, the embedded registers add an output pipeline register to the FWFT FIFO. The
DOUT and VALID output ports are delayed by 1 clock cycle during a read operation.
These pipeline registers are always enabled, and the DOUT reset value feature is not
supported in Virtex-4 and Virtex-5 FPGAs, as illustrated in Figure 5-22. For this
configuration, the embedded output register feature is only available for FIFOs that use
only 1 FIFO macro in depth.

Note: Virtex-5 FPGA built-in FIFOs with independent clocks and FWFT always use the
embedded output registers in the macro to implement the FWFT registers.

When using the embedded output registers with a common clock built-in FIFO in
Kintex-7, Virtex-7, and Virtex-6 FPGAs, the DOUT reset value feature is supported, as
illustrated in Figure 5-23.

Built-in Error Correction Checking
Built-in ECC is supported for FIFOs configured with independent or common clock block
RAM and built-in FIFOs targeting Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs. In
addition, error injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs targeting Kintex-7, Virtex-7, and Virtex-6 FPGAs.
When ECC is enabled, the block RAM and built-in FIFO primitive used to create the FIFO
is configured in the full ECC mode (both encoder and decoder enabled), providing two
additional outputs to the FIFO Generator core: SBITERR and DBITERR. These outputs

X-Ref Target - Figure 5-22

Figure 5-22: FWFT Read Operation for a Synchronous Built-in
FIFO with User Embedded Registers Enabled

X-Ref Target - Figure 5-23

Figure 5-23: DOUT Reset Value for Kintex-7, Virtex-7, and Virtex-6 Common Clock
Built-in FIFO Embedded Register

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D2 D3 D4

ALMOST_EMPTY

D1D0 D3

http://www.xilinx.com

128 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

indicate three possible read results: no error, single error corrected, and double error
detected. In the full ECC mode, the read operation does not correct the single error in the
memory array, it only presents corrected data on DOUT.

Figure 5-24 shows how the SBITERR and DBITERR outputs are generated in the FIFO
Generator core. The output signals are created by combining all the SBITERR and
DBITERR signals from the FIFO or block RAM primitives using an OR gate. Because the
FIFO primitives may be cascaded in depth, when SBITERR or DBITERR is asserted, the
error may have occurred in any of the built-in FIFO macros chained in depth or block RAM
macros. For this reason, these flags are not correlated to the data currently being read from
the FIFO Generator core or to a read operation. For this reason, when the DBITERR is
flagged, the user should assume that the data in the entire FIFO has been corrupted and the
user logic needs to take the appropriate action. As an example, when DBITERR is flagged,
an appropriate action for the user logic is to halt all FIFO operation, reset the FIFO, and
restart the data transfer.

The SBITERR and DBITERR outputs are not registered and are generated combinatorially.
If the configured FIFO uses two independent read and write clocks, the SBITERR and
DBITERR outputs may be generated from either the write or read clock domain. The
signals generated in the write clock domain are synchronized before being combined with
the SBITERR and DBITERR signals generated in the read clock domain.

Note that due to the differing read and write clock frequencies and the OR gate used to
combine the signals, the number of read clock cycles that the SBITERR and DBITERR flags
assert is not an accurate indicator of the number of errors found in the built-in FIFOs.
X-Ref Target - Figure 5-24

Figure 5-24: SBITERR and DBITERR Outputs in the FIFO Generator Core

Write Domain Read Domain

WR_EN

DIN

WR_ACK

OVERFLOW

FULL EMPTY

RD_EN

DOUT

UNDERFLOW

VALID

PROG_FULL PROG_EMPTY

DOUT

Cascaded Built-in FIFO Primitives

DIN

WE RE
Built-in FIFO/
block RAM

SBITERR

DBITERR

Logic for Optional
Flags: Write Domain

Logic for Optional
Flags: Read Domain

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 129
UG175 April 24, 2012

Built-in Error Injection
Built-in Error Injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs in Kintex-7, Virtex-7, and Virtex-6 FPGAs. When ECC
and Error Injection are enabled, the block RAM and built-in FIFO primitive used to create
the FIFO is configured in the full ECC error injection mode, providing two additional
inputs to the FIFO Generator core: INJECTSBITERR and INJECTDBITERR. These inputs
indicate three possible results: no error injection, single bit error injection, or double bit
error injection.

The ECC is calculated on a 64-bit wide data of Kintex-7, Virtex-7, and Virtex-6 FPGA ECC
primitives. If the data width chosen by the user is not an integral multiple of 64 (for
example, there are spare bits in any ECC primitive), then a double bit error (DBITERR) may
indicate that one or more errors have occurred in the spare bits. So, the accuracy of the
DBITERR signal cannot be guaranteed in this case. For example, if the user's data width is
16, then 48 bits of the ECC primitive are left empty. If two of the spare bits are corrupted,
the DBITERR signal would be asserted even though the actual user data is not corrupt.

When INJECTSBITERR is asserted on a write operation, a single bit error is injected and
SBITERR is asserted upon read operation of a specific write. When INJECTDBITERR is
asserted on a write operation, a double bit error is injected and DBITERR is asserted upon
read operation of a specific write. When both INJECTSBITERR and INJECTDBITERR are
asserted on a write operation, a double bit error is injected and DBITERR is asserted upon
read operation of a specific write. Figure 5-25 shows how the SBITERR and DBITERR
outputs are generated in the FIFO Generator core.

Note: Reset is not supported by the FIFO/BRAM macros when using the ECC option. Therefore,
outputs of the FIFO core (DOUT, DBITERR and SBITERR) will not be affected by reset, and they hold
their previous values. See Reset Behavior for more details.

Reset Behavior
The FIFO Generator provides a reset input that resets all counters, output registers, and
memories when asserted. For block RAM or distributed RAM implementations, resetting

X-Ref Target - Figure 5-25

Figure 5-25: Error Injection and Correction in Kintex-7, Virtex-7, and Virtex-6 FPGAs

WR_EN

D0 D1 D2 D3 D4

D0 D1 D2x D3 D4xDOUT

DIN

RD_EN

INJECTSBITERR

INJECTDBITERR

SBITERR

DBITERR

Corrupted
and

Corrected
Data

Corrupted
Data

Corrupted
Data

http://www.xilinx.com

130 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

the FIFO is not required, and the reset pin can be disabled in the FIFO. There are two reset
options: asynchronous and synchronous.

Asynchronous Reset (Enable Reset Synchronization Option is Selected)

The asynchronous reset (RST) input asynchronously resets all counters, output registers,
and memories when asserted. When reset is implemented, it is synchronized internally to
the core with each respective clock domain for setting the internal logic of the FIFO to a
known state. This synchronization logic allows for proper timing of the reset logic within
the core to avoid glitches and metastable behavior.

Common/Independent Clock: Block RAM, Distributed RAM, and Shift RAM FIFOs

Table 5-7 defines the values of the output ports during power-up and reset state for block
RAM, distributed RAM, and shift RAM FIFOs. Note that the underflow signal is
dependent on RD_EN. If RD_EN is asserted and the FIFO is empty, underflow is asserted.
The overflow signal is dependent on WR_EN. If WE_EN is asserted and the FIFO is full,
overflow is asserted.

There are two asynchronous reset behaviors available for these FIFO configurations: Full
flags reset to 1 and full flags reset to 0. The reset requirements and the behavior of the FIFO
is different depending on the full flags reset value chosen.

Note: The reset is edge sensitive and not level sensitive. The synchronization logic looks for the
rising edge of RST and creates an internal reset for the core. Note that the assertion of asynchronous
reset immediately causes the core to go into a predetermine reset state - this is not dependent on any
clock toggling. The reset synchronization logic is used to ensure that the logic in the different clock
domains comes OUT of the reset mode at the same time - this is by synchronizing the deassertion of
asynchronous reset to the appropriate clock domain. By doing this glitches and metastability can be
avoided. This synchronization takes three clock cycles (write or read) after the asynchronous reset is
detected on the rising edge read and write clock respectively. To avoid unexpected behavior, it is not
recommended to drive/toggle WR_EN/RD_EN when RST or FULL is asserted/high.

Table 5-7: FIFO Asynchronous Reset Values for Block RAM, Distributed RAM,
and Shift RAM FIFOs

Signal
Full Flags Reset

Value of 1
Full Flags Reset

Value of 0
Power-up

Values

DOUT DOUT Reset Value or
0

DOUT Reset
Value or 0

Same as reset
values

FULL 1(1) 0 0

ALMOST FULL 1(1) 0 0

EMPTY 1 1 1

ALMOST EMPTY 1 1 1

VALID 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

WR_ACK 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

PROG_FULL 1(1) 0 0

PROG_EMPTY 1 1 1

RD_DATA_COUNT 0 0 0

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 131
UG175 April 24, 2012

Full Flags Reset Value of 1

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write
clock period (WR_CLK/CLK). After reset is detected on the rising clock edge of write clock,
3 write clock periods are required to complete proper reset synchronization. During this
time, the FULL, ALMOST_FULL, and PROG_FULL flags are asserted. After reset is
deasserted, these flags deassert after 3 clock period (WR_CLK/CLK) and the FIFO is now
ready for writing.

The FULL and ALMOST_FULL flags are asserted to ensure that no write operations occur
when the FIFO core is in the reset state. After the FIFO exits the reset state and is ready for
writing, the FULL and ALMOST_FULL flags deassert; this occurs approximately three clock
cycles after the deassertion of asynchronous reset. See Figure 5-26 and Figure 5-27 for
example behaviors. Note that the power-up values for this configuration are different from
the reset state value.

Figure 5-26 shows an example timing diagram for when the reset pulse is one clock
duration.

WR_DATA_COUNT 0 0 0

Notes:
1. When reset is asserted, the FULL flags are asserted to prevent writes to the FIFO during reset.

X-Ref Target - Figure 5-26

Figure 5-26: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of One Clock

Table 5-7: FIFO Asynchronous Reset Values for Block RAM, Distributed RAM,
and Shift RAM FIFOs

ALMOST_FULL

WR_CLK

FULL

PROG_FULL

In Reset State Out of Reset State

RST

Write domain in reset state Write domain out of reset state

WR_EN

WR_ACK

VALID

RD_CLK

Read domain out of reset state
Read domain in

reset state

RD_EN

http://www.xilinx.com

132 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Figure 5-27 shows an example timing diagram for when the reset pulse is longer than one
clock duration.

Full Flags Reset Value of 0

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write
clock cycle to complete the proper reset synchronization. At reset, FULL, ALMOST_FULL
and PROG_FULL flags are deasserted. After the FIFO exits the reset synchronization state,
the FIFO is ready for writing; this occurs approximately three clock cycles after the
assertion of asynchronous reset. See Figure 5-28 for example behavior.

Common/Independent Clock: Built-in

Table 5-7 defines the values of the output ports during power-up and reset state for Built-
in FIFOs. The DOUT reset value is supported only for Kintex-7, Virtex-7 and Virtex-6
common clock Built-In FIFOs with the embedded register option selected. The Kintex-7
and Virtex-7 FPGA Built-In FIFOs require an asynchronous reset pulse of at least 5 read
and write clock cycles. To be consistent across all built-in FIFO configurations, it is

X-Ref Target - Figure 5-27

Figure 5-27: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of More Than One Clock

X-Ref Target - Figure 5-28

Figure 5-28: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 0

ALMOST_FULL

WR_CLK

FULL

PROG_FULL

No Write Zone

RST

WR_CLK

RST

FULL

ALMOST_FULL

PROG_FULL

In Reset state Out of Reset state

Write domain in reset state Write domain out of reset state

WR_EN

WR_ACK

VALID

Read domain out of reset state
Read domain in

reset state

RD_EN

RD_CLK

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 133
UG175 April 24, 2012

recommended to give an asynchronous reset pulse of at least 5 read and write clock cycles
for Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGA Built-in FIFOs. However, the
FIFO Generator core has a built-in mechanism ensuring the reset pulse is high for five read
and write clock cycles for all Built-in FIFOs.

During reset, the RD_EN and WR_EN ports are required to be deasserted (no read or write
operation can be performed). Assertion of reset causes the FULL and PROG_FULL flags to
deassert and EMPTY and PROG_EMPTY flags to assert. After asynchronous reset is released,
the core exits the reset state and is ready for writing. See Figure 5-29 for example behavior.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

Synchronous Reset

The synchronous reset input (SRST or WR_RST/RD_RST synchronous to
WR_CLK/RD_CLK domain) is only available for the block RAM, distributed RAM, or
shift RAM implementation of the common/independent clock FIFOs.

Common Clock Block, Distributed, or Shift RAM FIFOs

The synchronous reset (SRST) synchronously resets all counters, output registers and
memories when asserted. Because the reset pin is synchronous to the input clock and there
is only one clock domain in the FIFO, no additional synchronization logic is necessary.

Table 5-8: Asynchronous FIFO Reset Values for Built-in FIFO

Signal Built-in FIFO Reset Values
Power-up

Values

DOUT Last read value Content of memory at location
0

FULL 0 0

EMPTY 1 1

VALID 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

PROG_FULL 0 0

PROG_EMPTY 1 1

X-Ref Target - Figure 5-29

Figure 5-29: Built-in FIFO, Asynchronous Reset Behavior

http://www.xilinx.com

134 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Figure 5-32 illustrates the flags following the release of SRST.

Independent Clock Block and Distributed RAM FIFOs (Enable Reset
Synchronization Option not Selected)

The synchronous reset (WR_RST/RD_RST) synchronously resets all counters, output
registers of respective clock domain when asserted. Because the reset pin is synchronous to
the respective clock domain, no additional synchronization logic is necessary.

If one reset (WR_RST/RD_RST) is asserted, the other reset must also be applied. The time
at which the resets are asserted/de-asserted may differ, and during this period the FIFO
outputs become invalid. To avoid unexpected behavior, it is not recommended to perform
write or read operations from the assertion of the first reset to the de-assertion of the last
reset.

Note: For FIFOs built with First-Word-Fall-Through and ECC configurations, the SBITERR and
DBITERR may be high until a valid read is performed after the de-assertion of both WR_RST and
RD_RST.

X-Ref Target - Figure 5-30X-Ref Target - Figure 5-31X-Ref Target - Figure 5-32

Figure 5-32: Synchronous Reset: FIFO with a Common Clock

CLK

SRST

FULL

ALMOST_FULL

PROG_FULL

In Reset state Out of Reset state

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 135
UG175 April 24, 2012

Figure 5-33 and Figure 5-34 illustrate the rules to be considered.
X-Ref Target - Figure 5-33

Figure 5-33: Synchronous Reset: FIFO with Independent Clock -
WR_RST then RD_RST

WR_CLK

WR_RST

1 2 3 4 5 6

wr_en will not have any effect

RD_CLK

RD_RST

1 2 3 4 5 6 7 8

rd_en will not have any effect

No Write/Read Operation

WR_CLK

WR_RST

1 2 3 4 5 6

wr_en will not have any effect

RD_CLK

RD_RST

1 2 3 4 5 6 7 8

rd_en will not have
any effect

No Write/Read Operation

http://www.xilinx.com

136 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-9 defines the values of the output ports during power-up and the reset state. If the
user does not specify a DOUT reset value, it defaults to 0. The FIFO requires a reset pulse
of only 1 clock cycle. The FIFOs are available for transaction on the clock cycle after the
reset is released. The power-up values for the synchronous reset are the same as the reset
state.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

X-Ref Target - Figure 5-34

Figure 5-34: Synchronous Reset: FIFO with Independent Clock -
RD_RST then WR_RST

Table 5-9: Synchronous FIFO Reset and Power-up Values

Signal
Block Memory and

Distributed Memory Values of
Output Ports During Reset and Power-up

DOUT DOUT Reset Value or 0

FULL 0

ALMOST FULL 0

EMPTY 1

ALMOST EMPTY 1

VALID 0 (active high) or 1 (active low)

RD_CLK

RD_RST

1 2 3 4 5 6

rd_en will not have any effect

WR_CLK

WR _RST

1 2 3 4 5 6 7 8

wr_en will not have any effect

No Write/Read Operation

RD_CLK

RD_RST

1 2 3 4 5 6

rd_en will not have any effect

WR_CLK

WR_RST

1 2 3 4 5 6 7 8

wr_en will not have
any effect

No Write/Read Operation

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 137
UG175 April 24, 2012

Actual FIFO Depth
Of critical importance is the understanding that the effective or actual depth of a FIFO is not
necessarily consistent with the depth selected in the GUI, because the actual depth of the
FIFO depends on its implementation and the features that influence its implementation. In
the FIFO Generator GUI, the actual depth of the FIFO is reported: the following section
provides formulas or calculations used to report this information.

Block RAM, Distributed RAM and Shift RAM FIFOs
The actual FIFO depths for the block RAM, distributed RAM, and shift RAM FIFOs are
influenced by the following features that change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Symmetric or Non-symmetric Port Aspect Ratio

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Common Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth

actual_read_depth = gui_read_depth

• Common Clock FIFO in FWFT Read Mode

actual_write_depth = gui_write_depth +2

actual_read_depth = gui_read_depth +2

• Independent Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth - 1

actual_read_depth = gui_read_depth - 1

• Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (gui_write_depth - 1) +
(2*round_down(gui_write_depth/gui_read_depth))

actual_read_depth = gui_read_depth + 1

Notes

1. Gui_write_depth = actual write (input) depth selected in the GUI

2. Gui_read_depth = actual read (output) depth selected in the GUI

3. Non-symmetric port aspect ratio feature (gui_write_depth not equal to
gui_read_depth) is only supported in block RAM based FIFOs.

WR_ACK 0 (active high) or 1 (active low)

PROG_FULL 0

PROG_EMPTY 0

RD_DATA_COUNT 0

WR_DATA_COUNT 0

Table 5-9: Synchronous FIFO Reset and Power-up Values (Cont’d)

http://www.xilinx.com

138 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-In FIFOs
The actual FIFO depths for the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in
FIFOs are influenced by the following features, which change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Built-In FIFO primitive used in implementation (minimum depth is 512)

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Independent Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+2)*(N-1) + (primitive_depth+1)

• Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+2)*N

• Common Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+1)*(N-1) + primitive_depth

• Common Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+1)*N

Notes

1. primitive_depth = depth of the primitive used to implement the FIFO; this information
is reported in the GUI

2. N = number of primitive cascaded in depth or roundup
(gui_write_depth/primitive_depth)

Virtex-4 FPGA Built-In FIFOs
The actual FIFO depths for the Virtex-4 FPGA Built-in FIFOs are influenced by the
following features, which change its implementation:

• Read and Write Clock Frequencies

• Built-In FIFO primitive used in implementation (minimum depth is 512)

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency
> WR_CLK frequency

actual_write_depth = primitive_depth+17

• Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency
<= WR_CLK frequency

actual_write_depth = primitive_depth+17

Note: primitive_depth = depth of the primitive used to implement the FIFO. For more
details, see UG070, Virtex-4 FPGA User Guide.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

FIFO Generator v9.1 www.xilinx.com 139
UG175 April 24, 2012

Latency
This section defines the latency in which different output signals of the FIFO are updated
in response to read or write operations.

Note: Latency is defined as the number of clock edges after a read or write operation occur
before the signal is updated. Example: if latency is 0, that means that the signal is updated
at the clock edge in which the operation occurred, as shown in Figure 5-35 in which
WR_ACK is getting updated in which WR_EN is high.

Non-Built-in FIFOs: Common Clock and Standard Read Mode
Implementations

Table 5-10 defines the write port flags update latency due to a write operation for non-
Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 5-11 defines the read port flags update latency due to a read operation.

X-Ref Target - Figure 5-35

Figure 5-35: Latency 0 Timing

CLK

WR_EN

WR_ACK

Table 5-10: Non-Built-in FIFOs, Common Clock and Standard Read Mode
Implementations: Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 5-11: Non-Built-in FIFOs, Common Clock and Standard Read Mode
Implementations: Read Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

DATA_COUNT 0

http://www.xilinx.com

140 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-12 defines the write port flags update latency due to a read operation.

Table 5-13 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Common Clock and FWFT Read Mode
Implementations

Table 5-14 defines the write port flags update latency due to a write operation for non-
Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 5-12: Non-Built-in FIFOs, Common Clock and Standard Read Mode
Implementations: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

Table 5-13: Non-Built-in FIFOs, Common Clock and Standard Read Mode
Implementations: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

DATA_COUNT 0

Table 5-14: Non-Built-in FIFOs, Common Clock and FWFT Read Mode
Implementations: Write Port Flags Update Latency due to Write Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 141
UG175 April 24, 2012

Table 5-15 defines the read port flags update latency due to a read operation.

Table 5-16 defines the write port flags update latency due to a read operation.

Table 5-17 defines the read port flags update latency due to a write operation.

Table 5-15: Non-Built-in FIFOs, Common Clock and FWFT Read Mode
Implementations: Read Port Flags Update Latency due to Read Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

DATA_COUNT 0

Table 5-16: Non-Built-in FIFOs, Common Clock and FWFT Read Mode
Implementations: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

Table 5-17: Non-Built-in FIFOs, Common Clock and FWFT Read Mode
Implementations: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY 2

ALMOST_EMPTY 1

PROG_EMPTY 1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

DATA_COUNT 0

http://www.xilinx.com

142 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Non-Built-in FIFOs: Independent Clock and Standard Read Mode
Implementations

Table 5-18 defines the write port flags update latency due to a write operation.

Table 5-19 defines the read port flags update latency due to a read operation.

Table 5-20 defines the write port flags update latency due to a read operation.

Table 5-18: Non-Built-in FIFOs, Independent Clock and Standard Read Mode
Implementations: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

WR_DATA_COUNT 1

Table 5-19: Non-Built-in FIFOs, Independent Clock and Standard Read Mode
Implementations: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

RD_DATA_COUNT 1

Table 5-20: Non-Built-in FIFOs, Independent Clock and Standard Read Mode
Implementations: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the
latency calculation.

ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)a

WR_ACKb

b. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWb N/A

WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 143
UG175 April 24, 2012

Table 5-21 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Independent Clock and FWFT Read Mode
Implementations

Table 5-22 defines the write port flags update latency due to a write operation.

Table 5-23 defines the read port flags update latency due to a read operation.

Table 5-21: Non-Built-in FIFOs, Independent Clock and Standard Read Mode
Implementations: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the
latency calculation.

ALMOST_EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)a

VALIDb

b. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWb N/A

RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

Note: Read handshaking signals only impacted by read operation.

Table 5-22: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode
Implementations: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

WR_DATA_COUNT 1

Table 5-23: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode
Implementations: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

RD_DATA_COUNT 1

http://www.xilinx.com

144 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-24 defines the write port flags update latency due to a read operation.

Table 5-25 defines the read port flags update latency due to a write operation.

Table 5-24: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode
Implementations: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the
latency calculation.

ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)a

WR_ACKb

b. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWb N/A

WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

Table 5-25: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode
Implementations: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the
latency calculation.

ALMOST_EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)a

PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)a

VALIDb

b. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWb N/A

RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a
+ [2 RD_CLK (+1 RD_CLK)]c

c. This latency is the worst-case latency. The addition of the [2 RD_CLK (+1 RD_CLK)] latency depends
on the status of the EMPTY and ALMOST_EMPTY flags.

Note: Read handshaking signals only impacted by read operation.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 145
UG175 April 24, 2012

Built-in FIFOs: Common Clock and Standard Read Mode
Implementations

Note: N is the number of primitives cascaded in depth. This can be calculated by dividing
the GUI depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-
in FIFOs” refers to the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5
FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 5-26 defines the write port flags update latency due to a write operation.

Table 5-27 defines the read port flags update latency due to a read operation.

Table 5-28 defines the write port flags update latency due to a read operation.

Table 5-26: Common Clock Built-in FIFOs with Standard Read Mode
Implementations: Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 5-27: Common Clock Built-in FIFOs with Standard Read Mode
Implementations: Read Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 5-28: Common Clock Built-in FIFOs with Standard Read Mode
Implementations: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL (N-1)

PROG_FULL N

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

http://www.xilinx.com

146 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-29 defines the read port flags update latency due to a write operation.

Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
Note: N is the number of primitives cascaded in depth. This can be calculated by dividing
the GUI depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-
in FIFOs” refers to the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5
FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 5-30 defines the write port flags update latency due to a write operation.

Table 5-31 defines the read port flags update latency due to a read operation.

Table 5-29: Common Clock Built-in FIFOs with Standard Read Mode
Implementations: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY (N-1)*2

PROG_EMPTY (N-1)*2+1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

Table 5-30: Common Clock Built-in FIFOs with FWFT Read Mode Implementations:
Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 5-31: Common Clock Built-in FIFOs with FWFT Read Mode Implementations:
Read Port Flags Update Latency Due to a Read Operation

Signals Latency (CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 147
UG175 April 24, 2012

Table 5-32 defines the write port flags update latency due to a read operation.

Table 5-33 defines the read port flags update latency due to a write operation

Built-in FIFOs: Independent Clocks and Standard Read Mode
Implementations

Note: N is the number of primitives cascaded in depth. This can be calculated by dividing
the GUI depth by the primitive. For ECC, the primitive depth is 512. Faster_Clk is the
clock domain, either RD_CLK or WR_CLK, that has a larger frequency. The term “Built-in
FIFOs” refers to the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 5-34 defines the write port flags update latency due to a write operation.

Table 5-32: Common Clock Built-in FIFOs with FWFT Read Mode Implementations:
Write Port Flags Update Latency Due to a Read Operation

Signals Latency (CLK)

FULL (N-1)

PROG_FULLa

a. Write handshaking signals are only impacted by a write operation.

N

WR_ACKa N/A

OVERFLOW N/A

Table 5-33: Common Clock Built-in FIFOs with FWFT Read Mode Implementations:
Read Port Flags Update Latency Due to a Write Operation

Signals Latency (CLK)

EMPTY ((N-1)*2+1)

PROG_EMPTY ((N-1)*2+1)

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

Table 5-34: Independent Clock Built-in FIFOs with Standard Read Mode
Implementations: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

http://www.xilinx.com

148 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-35 defines the read port flags update latency due to a read operation.

Table 5-36 defines the write port flags update latency due to a read operation.

Table 5-37 defines the read port flags update latency due to a write operation.

Table 5-35: Independent Clock Built-in FIFOs with Standard Read Mode
Implementations: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 5-36: Independent Clock Built-in FIFOs with Standard Read Mode
Implementations: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULLa

a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one
cycle later.

L1b RD_CLK + (N-1)*L2c faster_clk + L3d WR_CLK

b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 = 5 for Virtex-5, Virtex-6, and L2 = 4 for 7 series devices.
d. L3 = 3 for Virtex-5, Virtex-6 and 7 series devices.

PROG_FULLa L4e RD_CLK + (N-1)*(L2c -1) faster_clk + L5f WR_CLK

e. L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.
f. L5 = 3 for Virtex-5, Virtex-6, and L5 = 4 for 7 series devices.

WR_ACKg

g. Write handshaking signals are only impacted by a Write operation.

N/A

OVERFLOWg N/A

Table 5-37: Independent Clock Built-in FIFOs with Standard Read Mode
Implementations: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTYa

a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one
cycle later.

L1b WR_CLK + (N-1)*L2c faster_clk + L3d RD_CLK

b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 = 4 for Virtex-5, Virtex-6 and 7 series devices.
d. L3 = 4 for Virtex-5, Virtex-6 and 7 series devices.

PROG_EMPTYa L4e WR_CLK + (N-1)*(L5f -1) faster_clk + L6g RD_CLK

e. L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.
f. L5 = 4 for Virtex-5, Virtex-6; and L5 = 5 for 7 series devices.
g. L6 = 3 for Virtex-5, Virtex-6; and L6 = 4 for 7 series devices.

VALIDh

h. Read handshaking signals are only impacted by a Read operation.

N/A

UNDERFLOWh N/A

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 149
UG175 April 24, 2012

Built-in FIFOs: Independent Clocks and FWFT Read Mode
Implementations

Note: N is the number of primitives cascaded in depth, which can be calculated by
dividing the GUI depth by the primitive depth. For ECC, the primitive depth is 512.
Faster_Clk is the clock domain, either RD_CLK or WR_CLK, that has a larger frequency.
The term “Built-in FIFOs” refers to the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and
Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 5-38 defines the write port flags update latency due to a write operation.

Table 5-39 defines the read port flags update latency due to a read operation.

Table 5-40 defines the write port flags update latency due to a read operation.

Table 5-38: Independent Clock Built-in FIFOs with FWFT Read Mode
Implementations: Write Port Flags Update Latency Due to a Write Operations

Signals Latency (WR_CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 5-39: Independent Clock Built-in FIFOs with FWFT Read Mode
Implementations: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 5-40: Independent Clock Built-in FIFOs with FWFT Read Mode
Implementations: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULLa

a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one
cycle later.

L1b RD_CLK + (N-1)*L2c faster_clk + L3d WR_CLK

b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 = 5 for Virtex-5, Virtex-6, and L2 = 4 for 7 series devices.
d. L3 = 3 for Virtex-5, Virtex-6 and 7 series devices.

PROG_FULLa L4e RD_CLK + (N-1)*(L2c -1) faster_clk + L5f WR_CLK

e. L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.

WR_ACKg N/A

OVERFLOWg N/A

http://www.xilinx.com

150 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Table 5-41 defines the read port flags update latency due to a write operation.

Virtex-4 FPGA Built-in FIFO
The Virtex-4 FPGA supports only one Built-in FIFO with a data width of 4, 9, 18 or 36. For
more details for the write and read port flags update latency, see UG070, Virtex-4 FPGA
User Guide.

f. L5 = 3 for Virtex-5, Virtex-6, and L5 = 4 for 7 series devices.
g. Write handshaking signals are only impacted by a Write operation.

Table 5-41: Independent Clock Built-in FIFOs with FWFT Read Mode
Implementations: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTYa

a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one
cycle later.

L1b WR_CLK + (N-1)*L2c faster_clk + L3d RD_CLK

b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 = 5 for Virtex-5, Virtex-6 and 7 series devices.
d. L3 = 4 for Virtex-5, Virtex-6 and 7 series devices.

PROG_EMPTYa L4e WR_CLK + (N-1)*(L5f -1) faster_clk + L6g RD_CLK

e. L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.
f. L5 = 4 for Virtex-5, Virtex-6, and L5 = 5 for 7 series devices.
g. L6 = 3 for Virtex-5, Virtex-6, and L6 = 4 for 7 series devices.

VALIDh

h. Read handshaking signals are only impacted by a Read operation.

N/A

UNDERFLOWh N/A

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

FIFO Generator v9.1 www.xilinx.com 151
UG175 April 24, 2012

Chapter 6

Special Design Considerations

This chapter provides additional design considerations for using the FIFO Generator core.

Resetting the FIFO
The FIFO Generator must be reset after the FPGA is configured and before operation
begins. Two reset pins are available, asynchronous (RST) and synchronous (SRST), and
both clear the internal counters and output registers.

• For asynchronous reset, internal to the core, RST is synchronized to the clock domain
in which it is used, to ensure that the FIFO initializes to a known state. This
synchronization logic allows for proper reset timing of the core logic, avoiding
glitches and metastable behavior. To avoid unexpected behavior, it is not
recommended to drive/toggle WR_EN/RD_EN when RST is asserted/high .

• For common clock block and distributed RAM synchronous reset, because the reset
pin is synchronous to the input clock and there is only one clock domain in the FIFO,
no additional synchronization logic is needed.

• For independent clock block and distributed RAM synchronous reset, because the
reset pin (WR_RST/RD_RST) is synchronous to the respective clock domain, no
additional synchronization logic is needed. However, it is recommended to follow
these rules to avoid unexpected behavior:

• If WR_RST is applied, then RD_RST must also be applied and vice versa.

• No write or read operations should be performed until both clock domains are
reset.

The generated FIFO core will be initialized after reset to a known state. For details about
reset values and behavior, see Reset Behavior in Chapter 5 of this guide.

Continuous Clocks
The FIFO Generator is designed to work only with free-running write and read clocks.
Xilinx does not recommend controlling the core by manipulating RD_CLK and WR_CLK. If
this functionality is required to gate FIFO operation, we recommend using the write enable
(WR_EN) and read enable (RD_EN) signals.

Pessimistic Full and Empty
When independent clock domains are selected, the full flag (FULL, ALMOST_FULL) and
empty flag (EMPTY, ALMOST_EMPTY) are pessimistic flags. FULL and ALMOST_FULL are
synchronous to the write clock (WR_CLK) domain, while EMPTY and ALMOST_EMPTY are
synchronous to the read clock (RD_CLK) domain.

http://www.xilinx.com

152 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

The full flags are considered pessimistic flags because they assume that no read operations
have taken place in the read clock domain. ALMOST_FULL is guaranteed to be asserted on
the rising edge of WR_CLK when there is only one available location in the FIFO, and FULL
is guaranteed to be asserted on the rising edge of WR_CLK when the FIFO is full. There may
be a number of clock cycles between a read operation and the deassertion of FULL. The
precise number of clock cycles for FULL to deassert is not predictable due to the crossing of
clock domains and synchronization logic. For more information see Simultaneous
Assertion of Full and Empty Flag

The EMPTY flags are considered pessimistic flags because they assume that no write
operations have taken place in the write clock domain. ALMOST_EMPTY is guaranteed to be
asserted on the rising edge of RD_CLK when there is only one more word in the FIFO, and
EMPTY is guaranteed to be asserted on the rising edge of RD_CLK when the FIFO is empty.
There may be a number of clock cycles between a write operation and the deassertion of
EMPTY. The precise number of clock cycles for EMPTY to deassert is not predictable due to
the crossing of clock domains and synchronization logic. For more information see
Simultaneous Assertion of Full and Empty Flag

See Chapter 5, “Designing with the Core,” for detailed information about the latency and
behavior of the full and empty flags.

Programmable Full and Empty
The programmable full (PROG_FULL) and programmable empty (PROG_EMPTY) flags
provide the user flexibility in specifying when the programmable flags assert and deassert.
These flags can be set either by constant value(s) or by input port(s). These signals differ
from the full and empty flags because they assert one (or more) clock cycle after the assert
threshold has been reached. These signals are deasserted some time after the negate
threshold has been passed. In this way, PROG_EMPTY and PROG_FULL are also considered
pessimistic flags. See Programmable Flags in Chapter 5 of this guide for more information
about the latency and behavior of the programmable flags.

Simultaneous Assertion of Full and Empty Flag
For independent clock FIFO, there are delays in the assertion/deassertion of the full and
empty flags due to cross clock domain logic. These delays may cause unexpected FIFO
behavior like full and empty asserting at the same time. To avoid this, the following A and
B equations must be true.

A) Time it takes to update full flag due to read operation < time it takes to empty a full
FIFO

B) Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

For example, assume the following configurations:

Independent clock (non built-in), standard FIFO

write clock frequency = 3MHz, wr_clk_period = 333 ns

read clock frequency = 148 MHz, rd_clk_period = 6.75 ns

write depth = read depth = 20

actual_wr_depth = actual_rd_depth = 19 (as mentioned in Actual FIFO Depth in
Chapter 5)

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 153
UG175 April 24, 2012

Apply equation A:

Time it takes to update full flag due to read operation < time it takes to empty a full FIFO
= 1*rd_clk_period + 5*wr_clk_period < actual_rd_depth*rd_clk_period

1*6.75 + 5*333 < 19*6.75

1671.75 ns < 128.5 ns --> Equation VIOLATED!

Note: Left side equation is the latency of full flag updating due to read operation as mentioned in
Table 5-20.

Conclusion: Violation of this equation proves that for this design, when a FULL FIFO is
read from continuously, the empty flag asserts before the full flag deasserts due to the read
operations that occurred.

Apply Equation B:

Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

1*wr_clk_period + 5*rd_clk_period < actual_wr_depth*wr_clk_period

1*333 + 5*6.75 < 19*333

366.75 ns < 6327 ns --> Equation MET!

Note: Left side equation is the latency of empty flag updating due to write operation as mentioned
in Table 5-21.

Conclusion: Because this equation is met for this design, an EMPTY FIFO that is written
into continuously has its empty flag deassert before the full flag is asserted.

Write Data Count and Read Data Count
When independent clock domains are selected, write data count (WR_DATA_COUNT) and
read data count (RD_DATA_COUNT) signals are provided as an indication of the number of
words in the FIFO relative to the write or read clock domains, respectively.

Consider the following when using the WR_DATA_COUNT or RD_DATA_COUNT ports.

• The WR_DATA_COUNT and RD_DATA_COUNT outputs are not an instantaneous
representation of the number of words in the FIFO, but can instantaneously provide
an approximation of the number of words in the FIFO.

• WR_DATA_COUNT and RD_DATA_COUNT may skip values from clock cycle to clock
cycle.

• Using non-symmetric aspect ratios, or running clocks which vary dramatically in
frequency, will increase the disparity between the data count outputs and the actual
number of words in the FIFO.

Note: The WR_DATA_COUNT and RD_DATA_COUNT outputs will always be correct after some
period of time where RD_EN=0 and WR_EN=0 (generally, just a few clock cycles after read and write
activity stops).

See Data Counts in Chapter 5 of this guide for details about the latency and behavior of the
data count flags.

http://www.xilinx.com

154 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Setup and Hold Time Violations
When generating a FIFO with independent clock domains (whether a DCM is used to
derive the write/read clocks or not), the core internally synchronizes the write and read
clock domains. For this reason, setup and hold time violations are expected on certain
registers within the core. In simulation, warning messages may be issued indicating these
violations. If these warning messages are from the FIFO Generator core, they can be safely
ignored. The core is designed to properly handle these conditions, regardless of the phase
or frequency relationship between the write and read clocks.

Alternatively, there are two ways to disable these expected setup and hold time violations
due to data synchronization between clock domains:

• Add the following constraint to your design – this constraint sets a timing constraint
to the synchronization logic by requiring a maximum set of delays. The maximum
delays used is defined by 2x of the slower clock period.

NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<0> MAXDELAY = 12 ns;
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<1> MAXDELAY = 12 ns;
 ...
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<9> MAXDELAY = 12 ns;

NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<0> MAXDELAY = 12 ns;
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<1> MAXDELAY = 12 ns;
 ...
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<9> MAXDELAY = 12 ns;

• Add the following constraint to your design – this constraint directs the tool to ignore
the appropriate paths that are part of the synchronization logic:

NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<0> TIG;
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<1> TIG;

 ...
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/wr_pntr_
gc<9> TIG;

NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<0> TIG;

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 155
UG175 April 24, 2012

NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<1> TIG;
 ...
NET
<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.gcx.clkx/rd_pntr_
gc<9> TIG;

• If distributed RAM FIFO is used, the following constraints may also be required to
improve the timing.

INST “<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.mem/Mram*”
TNM= RAMSOURCE;
INST
“<fifo_instance>/xst_fifo_generator/gconvfifo.rf/grf.rf/gntv_or_sync_fifo.mem/gdm.dm/dout*
” TNM= FFDEST;
TIMESPEC TS_RAM_FF= FROM “RAMSOURCE” TO “FFDEST” <<one read clock period>> DATAPATHONLY;

http://www.xilinx.com

156 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 157
UG175 April 24, 2012

Chapter 7

Simulating Your Design

The FIFO Generator is provided as a Xilinx technology-specific netlist, and as a behavioral
or structural simulation model. This chapter provides instructions for simulating the FIFO
Generator in your design.

Simulation Models
The FIFO Generator supports two types of simulation models based on the Xilinx CORE
Generator system project options. The models are available in both VHDL and Verilog®.
Both types of models are described in detail in this chapter.

To choose a model:

1. Open the CORE Generator.

2. Select Options from the Project drop-down list.

3. Click the Generation tab.

4. Choose to generate a behavioral model or a structural model.

Behavioral Models
Important! The behavioral models provided do not model synchronization delay, and are
designed to reproduce the behavior and functionality of the FIFO Generator. The models
maintain the assertion/deassertion of the output signals to match the FIFO Generator.

The behavioral models are functionally correct, and will represent the behavior of the
configured FIFO. The write-to-read latency and the behavior of the status flags will
accurately match the actual implementation of the FIFO design.

To generate behavioral models, select Behavioral and VHDL or Verilog in the Xilinx CORE
Generator project options. Behavioral models are the default project options.

The following considerations apply to the behavioral models.

• Write operations always occur relative to the write clock (WR_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• Read operations always occur relative to the read clock (RD_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• The delay through the FIFO (write-to-read latency) will match the VHDL model,
Verilog model, and core.

• The deassertion of the status flags (full, almost full, programmable full, empty, almost
empty, programmable empty) will match the VHDL model, Verilog model, and core.

http://www.xilinx.com

158 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Note: If independent clocks or common clocks with built-in FIFO is selected, the user must use the
structural model, as the behavioral model does not support the built-in FIFO configurations.

Structural Models
The structural models are designed to provide a more accurate model of FIFO behavior at
the cost of simulation time. These models will provide a closer approximation of cycle
accuracy across clock domains for asynchronous FIFOs. No asynchronous FIFO model can
be 100% cycle accurate as physical relationships between the clock domains, including
temperature, process, and frequency relationships, affect the domain crossing
indeterminately.

To generate structural models, select Structural and VHDL or Verilog in the Xilinx CORE
Generator project options.

Note: Simulation performance may be impacted when simulating the structural models compared to
the behavioral models

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 159
UG175 April 24, 2012

Chapter 8

Quick Start Example Design

This chapter provides instructions to generate a FIFO generator core quickly, run the
design through implementation with the Xilinx tools, and simulate the example design
using the provided demonstration test bench. See the example design in Chapter 9,
Detailed Example Design.

Figure 8-1 shows the example design and demonstration test bench block diagram.

The FIFO generator example design consists of the following:

• FIFO generator netlist/Behavioral model

• HDL wrapper which instantiates the FIFO generator netlist/Behavioral model

• Customizable demonstration test bench to simulate the example design

The FIFO generator example design has been tested with Xilinx® ISE® software v14.1,
Xilinx ISim, Cadence Incisive Enterprise Simulator (IES) and Mentor Graphics ModelSim
simulator .

Implementing the Example Design
After generating a core the netlist and example design can be processed by the Xilinx
implementation tools. The generated output files include scripts to assist you in running
the Xilinx software.

X-Ref Target - Figure 8-1

Figure 8-1: Example Design and Demonstration Test Bench

http://www.xilinx.com

160 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

To implement the FIFO Generator example design, open a command prompt or terminal
window and type these commands:

For Windows:

ms-dos> cd <proj_dir>\<component_name>\implement
ms-dos> implement.bat

For Linux:

Linux-shell% cd <proj_dir>/<component_name>/implement
Linux-shell% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and places-and-routes
the example design. The script then generates a post-par simulation model for use in
timing simulation. The resulting files are placed in the results directory.

Simulating the Example Design
The FIFO Generator core provides a quick way to simulate and observe the behavior of the
core by using the provided example design. There are two different simulation types:
functional and timing. The simulation models provided are either in VHDL or Verilog,
depending on the CORE Generator software Design Entry project option.

Setting up for Simulation
The Xilinx UNISIM and SIMPRIM libraries must be mapped into the simulator. If the
UNISIM or SIMPRIM libraries are not set for your environment, go to the Synthesis and
Simulation Guide in the Xilinx Software Manuals for assistance compiling Xilinx
simulation models.

Simulation scripts are provided for ISIM, IES and ModelSim simulation tools.

Functional Simulation
This section provides instructions for running a functional simulation of the FIFO
Generator core using either VHDL or Verilog. Functional simulation models are provided
when the core is generated. Implementing the core before simulating the functional
models is not required.

To run a VHDL or Verilog functional simulation of the example design:

1. Set the current directory to:

<component_name>/simulation/functional/

2. Launch the simulation script.

For Linux:

• ISIM:./simulate_isim.sh

• IES:./simulate_ncsim.sh

• MTI: vsim -do simulate_mti.do

For Windows:

• ISIM:./simulate_isim.bat

• MTI: vsim -do simulate_mti.do

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 161
UG175 April 24, 2012

The simulation script compiles the functional simulation models and demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

Timing Simulation
This section contains instructions for running a timing simulation of the FIFO Generator
core using either VHDL or Verilog. A timing simulation model is generated when the core
is run through the Xilinx tools using the implement script. It is a requirement that the core
is implemented before attempting to run timing simulation.

To run a VHDL or Verilog functional simulation of the example design:

1. Set the current directory to:

<component_name>/simulation/timing/

2. Launch the simulation script:

For Linux:

• ISIM:./simulate_isim.sh

• IES:./simulate_ncsim.sh

• MTI: vsim -do simulate_mti.do

For Windows:

• ISIM:./simulate_isim.bat

• MTI: vsim -do simulate_mti.do

The simulation script compiles the timing simulation model and the demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

http://www.xilinx.com

162 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 163
UG175 April 24, 2012

Chapter 9

Detailed Example Design

This chapter provides detailed information about the example design, including a
description of files and the directory structure generated by the Xilinx® CORE
Generator™ software, the purpose and contents of the provided scripts, the contents of the
example HDL wrappers, and the operation of the demonstration test bench.

The top-level project directory, <project_directory>, for the CORE Generator software
contains the following directories:

<project_directory>/<component_name>

Contains the FIFO Generator release notes text file.

 <component_name>/example design
Verilog and VHDL design files.

 <component_name>/implement
Implementation script files.

 <component_name>/implement/results
Created after implementation scripts are run and contains implement
script results.

 <component_name>/simulation
Contains the test bench and other supporting source files used to create
the RapidIO simulation model.

 <component_name>/simulation
Contains the test bench and other supporting source files used to create
the RapidIO simulation model.

 simulation/functional
Functional simulation scripts.

 simulation/timing
Timing simulation scripts.

http://www.xilinx.com

164 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Directory and File Contents
This section contains details about the directories of the example design.

<project_directory>
The <project_directory> contains all the CORE Generator software project files.

<project_directory>/<component_name>
The <component_name> directory contains the release notes text file included with the
core that contains last-minute changes and or updates.

<component_name>/example design
The example design directory contains the example design files provided with the core.

Table 9-1: Project Directory

Name Description

<project_directory>

<component_name>.ngc Top-level netlist.

<component_name>.v[hd] Verilog or VHDL simulation model .

<component_name>.xco CORE Generator software project-specific
option file; can be used as an input to the
CORE Generator software.

<component_name>_flist.txt List of files delivered with the core.

<component_name>.{veo|vho} VHDL or Verilog instantiation template.

Back To Top

Table 9-2: Component Name Directory

Name Description

<project_directory>/<component_name>

fifo_generator_v9_1_readme.txt Core name release notes file.

Back To Top

Table 9-3: Example Design Directory

Name Description

<project_directory>/<component_name>/example_design

<component_name>_top.ucf Provides example constraints necessary
for processing the FIFO Generator core
using the Xilinx implementation tools.

<component_name>_top.vhd The VHDL top-level file for the example
design; it instantiates the FIFO Generator
core. This file contains entity with the IO's
required for the core configuration.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 165
UG175 April 24, 2012

<component_name>/implement
The implement directory contains the core implementation script files.

<component_name>/implement/results
The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

<component_name>_top_wrapper.v[hd] The VHDL wrapper file for the example
design <component_name>_top.vhd file.
This file contains entity with all ports of
FIFO Generator core.

Back To Top

Table 9-3: Example Design Directory (Cont’d)

Name Description

Table 9-4: Implement Directory

Name Description

<project_directory>/<component_name>/implement

implement.{bat|sh} A Windows (.bat) or Linux script that processes the
example design.

xst.prj The XST project file for the example design that lists
all of the source files to be synthesized. Only
available when the CORE Generator software
project option is set to ISE or Other.

xst.scr The XST script file for the example design used to
synthesize the core. Only available when the CORE
Generator software Vendor project option is set to
ISE or Other.

Back To Top

Table 9-5: Results Directory

Name Description

<project_directory>/<component_name>/results

Implement script result files.

Back To Top

http://www.xilinx.com

166 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

<component_name>/simulation
The simulation directory contains the demo test bench files provided with the core.

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 9-6: Simulation Directory

Name Description

<project_directory>/<component_name>/simulation

fg_tb_pkg.vhd VHDL File provided with demonstration test bench. It
contains common functions required by the test bench.

fg_tb_rng.vhd VHDL File provided with demonstration test bench. It
contains logic for pseudo random number generation.

fg_tb_dgen.vhd VHDL File provided with demonstration test bench. It
contains logic for random data generation.

fg_tb_dverif.vhd VHDL File provided with demonstration test bench. It
contains logic for verifying the correctness of the FIFO
Generator core data output.

fg_tb_pctrl.vhd VHDL File provided with demonstration test bench. It
contains the test bench control logic and some checks.

fg_tb_synth.vhd VHDL File provided with demonstration test bench. This
file has the instances and connections for the core and test
bench modules.

fg_tb_top.vhd VHDL File provided with demonstration test bench.This
is the top file for the test bench which generates the clock
and reset signals. It also checks the test bench status.

Back To Top

Table 9-7: Functional Directory

Name Description

<project_directory>/<component_name>/simulation/functional

simulate_mti.do A ModelSim macro file that compiles the HDL sources and
runs the simulation.

wave_mti.do A ModelSim macro file that opens a wave window and
adds key signals to the wave viewer. This file is called by
the simulate_mti.do file and is displayed after the
simulation is loaded.

simulate_isim.bat ISim macro file for Windows that compiles the example
design sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 167
UG175 April 24, 2012

simulation/timing
The timing directory contains functional simulation scripts provided with the core.

simulate_isim.sh ISim macro file for Linux machines that compiles the
example design sources and the structural simulation
model. The demonstration test bench then runs the
functional simulation to completion.

wave_isim.tcl ISim macro file that opens a Wave window with top-level
signals.

simulate_ncsim.sh Linux shell script that compiles the example design
sources and the structural simulation model then runs the
functional simulation to completion using the Cadence IES
simulator.

wave_ncsim.sv The Cadence IES simulator macro file that opens a wave
window and adds interesting signals to it. This macro is
called by the simulate_ncsim.sh script.

Back To Top

Table 9-7: Functional Directory (Cont’d)

Name Description

Table 9-8: Timing Directory

Name Description

<project_directory>/<component_name>/simulation/timing

simulate_mti.do A ModelSim macro file that compiles the HDL sources and
runs the simulation.

wave_mti.do A ModelSim macro file that opens a wave window and
adds key signals to the wave viewer. This file is called by
the simulate_mti.do file and is displayed after the
simulation is loaded.

simulate_isim.bat ISim macro file for Windows that compiles the example
design sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

simulate_isim.sh ISim macro file for Linux that compiles the example design
sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

wave_isim.tcl ISim macro file that opens a Wave window with top-level
signals.

http://www.xilinx.com

168 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Implementation Scripts
The implementation script is either a shell script (.sh) or batch file (.bat) that processes the
example design through the Xilinx tool flow. It is located at:

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs these steps:

• Synthesizes the HDL example design files using XST

• Runs NGDBuild to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design

• Maps the design to the target technology

• Place-and-routes the design on the target device

• Performs static timing analysis on the routed design using Timing Analyzer (TRCE)

• Generates a bitstream

• Enables Netgen to run on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form
of SDF files

The Xilinx tool flow generates several output and report files. These are saved in the
following directory which is created by the implement script:

<project_dir>/<component_name>/implement/results

Simulation Scripts
This section contains details about the test scripts included in the example design.

simulate_ncsim.sh Linux shell script that compiles the example design
sources and the structural simulation model then runs the
functional simulation to completion using the Cadence IES
simulator.

wave_ncsim.sv The Cadence IES simulator macro file that opens a wave
window and adds interesting signals to it. This macro is
called by the simulate_ncsim.sh script.

Back To Top

Table 9-8: Timing Directory (Cont’d)

Name Description

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 169
UG175 April 24, 2012

Functional Simulation
The test scripts are ModelSim macros that automate the simulation of the test bench. They
are available from the following location:

<project_dir>/<component_name>/simulation/functional/

The test script performs these tasks:

• Compiles the behavioral model/structural UNISIM simulation model

• Compiles HDL Example Design source code

• Compiles the demonstration test bench

• Starts a simulation of the test bench

• Opens a Wave window and adds signals of interest (wave_mti.do)

• Runs the simulation to completion

Timing Simulation
The test scripts are ModelSim macros that automate the simulation of the test bench. They
are located in:

<project_dir>/<component_name>/simulation/timing/

The test script performs these tasks:

• Compiles the SIMPRIM based gate level netlist simulation model

• Compiles the demonstration test bench

• Starts a simulation of the test bench

• Opens a Wave window and adds signals of interest (wave_mti.do)

• Runs the simulation to completion

Example Design Configuration
Figure 9-1 shows the configuration of the example design.

The example design contains the following:

• An instance of the FIFO Generator core. During simulation, the FIFO Generator core is
instantiated as a black box and replaced with the CORE Generator software netlist

X-Ref Target - Figure 9-1

Figure 9-1: Example Design Configuration

http://www.xilinx.com

170 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

model during implementation for timing simulation or XST netlist/behavioral model
for the functional simulation.

• Global clock buffers for top-level port clock signals.

Demonstration Test Bench
Figure 9-2 shows a block diagram of the demonstration test bench.

Test Bench Functionality
The demonstration test bench is a straightforward VHDL file that can be used to exercise
the example design and the core itself. The test bench consists of the following:

• Clock Generators

• Data generator module

• Data verifier module

• Module to control data generator and verifier

Core with Native Interface

The demonstration test bench in a core with a Native interface performs the following
tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• Pseudo random data is generated and given as input to FIFO data input port.

• Data on dout port of the FIFO generator core is cross checked using another pseudo
random generator with same seed as data input generator.

• Core is exercised for two full and empty conditions.

• Full/almost_full and empty/almost_empty flags are checked.

X-Ref Target - Figure 9-2

Figure 9-2: Demonstration Test Bench

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 171
UG175 April 24, 2012

Core with AXI4 Interface

The demonstration test bench in a core with an AXI4 interface performs the following
tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• Pseudo random data is generated and given as input to FIFO AXI4 Interface input
signals. Each channel is independently checked for Valid-Ready handshake protocol.

• AXI4 output signals on read side are combined and cross checked with the pseudo
random generator data.

• For AXI4 Full/Lite interface five instances of data generator, data verifier and
protocol controller are used.

• For AXI4 Full Packet FIFO write address and read address channels valid/ready
signals are not checked.

Customizing the Demonstration Test Bench
This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data/Stimulus

The random data/stimulus can be altered by changing the seed passed to FIFO generator
test bench wrapper module in test bench top file (fg_tb_top.vhd).

Changing the Test Bench Run Time

The test bench iteration count (number of full/empty conditions before finish) can be
altered by changing the value passed to TB_STOP_CNT parameter. A '0' to this parameter
runs the test bench until the test bench timeout value set in test bench top file
(fg_tb_top.vhd).

It is also possible to decide whether to stop the simulation on error or on reaching the count
set by TB_STOP_CNT by using FREEZEON_ERROR parameter value (1(TRUE),
0(FALSE)) of test bench wrapper file (fg_tb_synth.vhd).

http://www.xilinx.com

172 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 173
UG175 April 24, 2012

Chapter 10

Migrating to the Latest Version

This chapter provides step-by-step instructions for migrating existing designs containing
instances of older versions of FIFO Generator Cores to the latest version of the FIFO
Generator.

Note: For all new designs, it is recommended to use the most recent version of the FIFO Generator
core.

Migrating Older Versions to the Most Recent Version
The FIFO Generator Migration Kit uses a perl script to automate the migration process
from older versions of the FIFO Generator core (from v1.0 to v8.4) to the newest version of
the FIFO Generator core (v9.1).

Use the fifo_migrate.pl script shipped with the FIFO Migration Kit zip file
(xapp992.zip) to convert older versions of FIFO Generator core to the latest version of
the FIFO Generator core.

Differences between Cores
This section defines the feature differences between the older versions of FIFO Generator
core and the latest version of FIFO Generator. Before migrating existing designs, evaluate
the differences because they may affect the behavior of your current design. In some cases,
designs may need to be adjusted for obsolete features.

Differences in port names and XCO parameters from previous FIFO Generator cores are
defined in Convert the XCO File, page 176 and Modifying the Instantiations of the Old
Core, page 178.

Migrating a Design

The Migration Kit provides a Perl script to help automate the process of converting the
previous version of the FIFO Generator core to the latest FIFO Generator core version. The
migration script automates all the steps, from converting the XCO file to modifying the
instantiation of the old core. In addition, this script can be used to isolate and automate
specific steps, making it also useful when following the Manual Migration Process,
page 175.

Migration Script

Note: The ISE v14.1 software requires a CGP file when CORE Generator is run in command line
mode. The migration script comes with a sample CGP file (coregen.cgp) which the user can modify
according to their requirements. The modified CGP file should be kept in the user directory where the
XCO file and instantiation files are located and must be named coregen.cgp to work with the
migration script.

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=151908&license=RefDesLicense

174 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

If you can provide a complete set of original design files (XCO files and instantiation
template files), the migration script (fifo_migrate.pl) completely and seamlessly
automates the migration process by executing the following steps:

1. Converts old XCO files to new format XCO files.

2. Converts instantiations of old cores to new core instantiations including changing port
names.

3. Generates new netlist(s) by calling the CORE Generator software with the new XCO
file.

The migration script, fifo_migrate.pl, can operate on various inputs and create a
variety of outputs based on user-specified command line options.

When using the script as part of the standard, fully-automated flow, supply the script with
either of these two file types or both:

• Old XCO core configuration files (created by the GUI when the FIFO core was
generated).

• HDL source file(s) containing the core instantiations (VHDL or Verilog).

From the script options, choose one or more of the following migration steps. All selected
steps are automatically performed by the script.

• Old FIFO XCO files to FIFO Generator v9.1 XCO files (use -x option).

• Generate the new netlists and convert the instantiations of the old FIFO cores in the
HDL source code to latest FIFO Generator core instances by running the CORE
Generator software (-x and -m options).

The script modifies and overwrites all input files so that the external project files and
scripts do not need to be updated with new file names or locations. Although the script
also automatically generates a backup of all files it modifies, it is strongly recommended
that you create a backup of all project files before running the migration script.

Output Products

Depending on the chosen command line option, the script overwrites the input XCO files,
modifies the input HDL files, and optionally generates FIFO Generator netlists (in the
same location as the XCO files).

The script creates a ./fifo_migrate_bak_filename[xco|v|vhd] backup directory
in which a copy of all files modified by the migration process are placed. It also generates
a restore script in this directory, restore_files.pl, to restore the original files if
necessary.

Using the Migration Script

To start the migration script, type the commands specific to your environment at the
command prompt.

Linux

<path to script>/fifo_migrate.pl -x -m <HDL file(s)> <xco file>

Windows

xilperl <path to script>\fifo_migrate.pl -x -m <HDL file(s)> <xco file>

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 175
UG175 April 24, 2012

You must use at least one of the following options in the command string:

• -x. Creates XCO output files needed by the CORE Generator software to generate the
core. Requires an input of the older version XCO file.

• -m. Calls the CORE Generator software to generate FIFO Generator netlists necessary
to synthesize the design. This option must be used in tandem with the -x option. It
modifies the HDL source files containing the core instantiations, converting the older
instantiations and adding compatibility code. Requires either XCO or HDL file or
both.

While using -x along with -m, the user can input only one XCO file, but one or more HDL
files(s) that correspond(s) to the input XCO file. The modification of the HDL file will be
according to the input XCO file. In addition, the user has to input the respective XCO file
for modification of HDL files containing legacy version of instantiation(s).

<xco file(s)> is a list of one or more core configuration files corresponding to old FIFO
cores which are to be converted to latest FIFO Generator core. These files can be referenced
from directories other than the working directory.

To reverse the changes made by the script, go to the backup directory at
./fifo_migrate_bak_filename[xco|v|vhd] and then run perl script
restore_files.pl.

Examples

fifo_migrate.pl -x -m my_design.v my_core.xco

1. Creates a FIFO Generator version of my_core.xco.

2. Modifies the instantiations of my_core in my_design.v.

3. Runs CORE Generator software to generate the FIFO Generator version of
my_core.ngc netlist file.

fifo_migrate.pl -x my_mem_core.xco

1. Creates a FIFO Generator version of my_mem_core.xco.

2. Script prompts the user to input a valid FIFO Generator version on execution.

Manual Migration Process

This section provides the instructions for the manual migration of an existing design to a
FIFO Generator core. A summary of the required steps are provided below, followed by
specific step-by-step instructions.

1. Convert the XCO File.

The XCO file is used by the CORE Generator to determine a core's configuration.

Note: If you plan to generate a new FIFO Generator core via the CORE Generator GUI, skip
this step.

2. Generate the FIFO Generator Core.

3. Parameterizing the FIFO Generator GUI.
Modify the instantiations of the old core. As the final step in the migration, you must
update all instantiations of the old cores in your HDL source code to reference the new
core. This includes changing the port names, as explained in Modifying the
Instantiations of the Old Core, page 178. Differences between Cores, page 173
discusses whether design modifications are needed to compensate for obsolete
features.

http://www.xilinx.com

176 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Convert the XCO File

Table 10-1 defines the mapping between previous FIFO Generator cores and the latest
FIFO Generator cores.

In addition to changes in the parameter section of the XCO file, the core name specified in
the XCO must be changed. Update the core name and version from the old core to the new
core.

For the previous FIFO Generator core, change the line:

SELECT FIFO_Generator family Xilinx,_Inc. x.y

to:

SELECT FIFO_Generator family Xilinx,_Inc. 9.1

Table 10-1: XCO Parameter Mapping: Previous FIFO Generator Cores

Previous FIFO
Coresa

a. Previous FIFO cores are FIFO Generator core versions from v1.0 to v3.3.

FIFO XCO Parameter Description of Conversion

component_name component_name No change required.

memory_type fifo_implementation

- reset_type Add this parameter and set the value
to synchronous_reset.

- full_flags_reset_value 1 (for backward compatibility).

- use_dout_reset True (for backward compatibility).

- use_dout_reset True
(for backward compatibility)

-

- disable_timing_violation -

- enable_ecc -

- enable_int_clk -

- performance_options -

- read_clock_requency -

- reset_pin -

- use_embedded_register -

- use_extra_logic -

- use_dout_reset -

- write_clock_frequency -

- programmable_empty_type -

- programmable_full_type -

- inject_sbit_error -

- inject_dbit_error -

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 177
UG175 April 24, 2012

Generate the FIFO Generator Core

Generate a new FIFO Generator netlist. Note that Xilinx ISE must be installed on your
system. The newly generated netlist (NGC) file replaces the old netlist file.

There are two ways to generate a new FIFO Generator netlist: using the CORE Generator
GUI, or by executing an updated XCO file.

Parameterizing the FIFO Generator GUI

With an existing project open, or after creating a new project, the FIFO Generator core is
available through the CORE Generator GUI.

To open the FIFO Generator core, do the following:

1. Click View by Function (active by default), and then open Memories & Storage
Elements > FIFOs.

2. Double-click FIFO Generator to display the main GUI screen

Table 10-2 compares GUI parameters between the old and new versions of the FIFO
Generator core. These tables help you choose the appropriate options when creating a new
core using the FIFO Generator GUI.

Table 10-2: GUI Parameter Comparison: Previous FIFO Generator

Previous FIFO
Generatora FIFO Generator Functionality of GUI Parameter

- Built-in FIFO Options

• Read Clock Frequency
• Write Clock Frequency

Set Read, Write Clock frequencies. This option is only available
for built-in FIFOs.

- Implementation Options

• Enable ECC
• Use Embedded Registers in BRAM

or FIFO (when possible)

Enable Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA-specific features. These options are only available for
block RAM and built-in based FIFOs.

- Initialization

• Reset Pin
• Asynchronous Reset
• Synchronous Reset

• Full Flags Reset Value
• Use Dout Reset
• Enable Reset Synchronization

Full Flags Reset Value determines the value of full flags (FULL,
ALMOST_FULL, PROG_FULL) during asynchronous reset.
Set the value to ’1’ for backward compatibility.

Use Dout Reset to determine if the DOUT output resets to a
specified value when the reset signal is asserted.

Set to true for backward compatibility.

Enable Reset Synchronization determines the use of internal
reset synchronization logic. Set to true for backward
compatibility.

http://www.xilinx.com

178 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Modifying the Instantiations of the Old Core

For each FIFO Generator core instantiation, do the following:

1. Change the name of the module. (Only necessary if component name of the core has
changed.)

2. Change the port names. For port name conversions, see Table 10-3.

- Programmable Flags

• Programmable Full Type
• full_threshold_assert_value
• full_threshold_negate_value

• Programmable Empty Type
• empty_threshold_assert_value
• empty_threshold_negate_value

Programmable Full Type provides the following options:

• No_Programmable_Full_Threshold
• Single_Programmable_Full_Threshold_Constant
• Multiple_Programmable_Full_Threshold_Constants
• Single_Programmable_Full_Threshold_Input_Port
• Multiple_Programmable_Full_Threshold_Input_Ports

Full threshold assert value is used to set the upper threshold
value for the programmable full flag.

Full Threshold Negate is used to set the lower threshold value
for the programmable full flag.

Programmable Empty Type provides the following

options:

• No_Programmable_Empty_Threshold
• Single_Programmable_Empty_Threshold_Constant
• Multiple_Programmable_Empty_Threshold_Constants
• Single_Programmable_Empty_Threshold_Input_Port
• Multiple_Programmable_Empty_Threshold_Input_Port

Empty Threshold Assert is used to set the lower threshold
value for the programmable empty flag.

Empty Threshold Negate is used to set the upper threshold
value for the programmable empty flag.

- Error Injection

• Single Bit Error Injection
• Double Bit Error Injection

Enable Kintex-7, Virtex-7, and Virtex-6 FPGA-specific
features. These options are only available for block RAM and
built-in FIFOs.

a. Previous FIFO Cores refer the FIFO Generator core versions from v1.0 to v3.3.

Table 10-2: GUI Parameter Comparison: Previous FIFO Generator (Cont’d)

Previous FIFO
Generatora FIFO Generator Functionality of GUI Parameter

Table 10-3: Port Name Mapping: Previous FIFO Generator Cores

Previous FIFO
Generator Corea

New FIFO
Generator Core

Conversion
Description

Functionality

Port Availability Port Availability Port Availability

DIN[N:0] Available DIN[N:0] Available Same Available

WR_EN Available WR_EN Available Same Available

WR_CLK Available WR_CLK Available Same Available

RD_EN Available RD_EN Available Same Available

RD_CLK Available RD_CLK Available Same Available

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 179
UG175 April 24, 2012

FULL Available FULL Available Same Available

ALMOST_FULL Optional ALMOST_FULL Available Same Available

- - PROG_FULL Optional - Optional

- - PROG_FULL_THRESH Optional - Optional

- - PROG_FULL_THRESH_ASSERT Optional - Optional

- - PROG_FULL_THRESH_NEGATE Optional - Optional

WR_COUNT[W:0] Optional WR_DATA_COUNT[D:0] Optional Direct

Replacement

Optional

WR_ACK Optional WR_ACK Same Optional

WR_ERR Optional OVERFLOW Optional Direct

Replacement

Optional

DOUT[N:0] Available DOUT[M:0] Available Same Optional

EMPTY Available EMPTY Available Same Optional

ALMOST_EMPTY Optional ALMOST_EMPTY Optional Same Optional

- - PROG_EMPTY Optional - Optional

- - PROG_EMPTY_THRESH Optional - Optional

- - PROG_EMPTY_THRESH_ASSERT Optional - Optional

- - PROG_EMPTY_THRESH_NEGATE Optional - Optional

RD_COUNT[R:0] Optional RD_DATA_COUNT[C:0] Optional Direct

Replacement

Optional

VALID Optional VALID Optional Direct

Replacement

Optional

Underflow Optional UNDERFLOW Optional Direct

Replacement

Optional

- - SBITERR Optional - Optional

- - DBITERR Optional - Optional

- - INJECTSBITERR Optional - Optional

- - INJECTDBITERR Optional - Optional

a. Previous FIFO Cores refer the FIFO Generator core versions from v1.0 to v3.3.

Table 10-3: Port Name Mapping: Previous FIFO Generator Cores (Cont’d)

Previous FIFO
Generator Corea

New FIFO
Generator Core

Conversion
Description

Functionality

Port Availability Port Availability Port Availability

http://www.xilinx.com

180 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Converting Native Interface FIFOs to AXI4 Interface FIFOs
This section explains how an existing Native Interface FIFO configuration (prior to v7.2)
can be achieved using the AXI4-Stream FIFO solution.

Component Name and FIFO Implementation Selection
Figure 10-1 shows the Native Interface FIFO Page 1 screen to set the component name and
FIFO Implementation types.

Figure 10-2, Figure 10-3 and Figure 10-4 show the equivalent settings of Figure 10-1 in the
AXI4-Stream GUI.

X-Ref Target - Figure 10-1

Figure 10-1: Native Interface FIFO: Page 1 - Component Name and FIFO
Implementation Selection

X-Ref Target - Figure 10-2

Figure 10-2: AXI4 Interface FIFO: Page 1 - Component Name and Interface Type
Selection

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 181
UG175 April 24, 2012

X-Ref Target - Figure 10-3

Figure 10-3: AXI4 Interface FIFO: Page 2 - Interface and Clocking Options

X-Ref Target - Figure 10-4

Figure 10-4: AXI4 Interface FIFO: Page 4 - FIFO Options

http://www.xilinx.com

182 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Read Mode and Data Port Parameters Selection
Figure 10-5 shows the Native Interface FIFO Page 2 screen to set the read mode, built-in
FIFO options, data port parameters, and implementation options.
X-Ref Target - Figure 10-5

Figure 10-5: Native Interface FIFO: Page 2 - Read Mode, Built-In FIFO, Data Port
Parameters and Implementation Options

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 183
UG175 April 24, 2012

Figure 10-6, Figure 10-7 and Figure 10-8 show the equivalent settings of Figure 10-5 in the
AXI4-Stream GUI.

When migrating to the AXI4 interface, note the following settings:

• Read Mode is always set to First-Word-Fall-Through in AXI4-Stream FIFOs.

• Built-in FIFO is not supported in AXI4-Stream FIFOs.

• Write Width of Native FIFOs can be set through TDATA Width on Page 3 of the AXI4-
Stream FIFO GUI, as shown in Figure 10-6. If the Write Width is > 512, then TUSER
Width can be used.

• Write Depth of Native FIFO can be set through FIFO Depth on Page 4 of the AXI4-
Stream FIFO GUI, as shown in Figure 10-7.

• The ECC can be enabled through Enable ECC in Page 4 of the AXI4-Stream FIFO GUI,
as shown in Figure 10-8.

• Use Embedded Register Option is not supported in AXI4-Stream FIFOs.

X-Ref Target - Figure 10-6

Figure 10-6: AXI4 Interface FIFO: Page 3 - Write Width Calculation

X-Ref Target - Figure 10-7

Figure 10-7: AXI4 Interface FIFO: Page 4 - FIFO Depth Selection

X-Ref Target - Figure 10-8

Figure 10-8: AXI4 Interface FIFO: Page 4 - ECC Selection

http://www.xilinx.com

184 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Optional Flags and Error Injection Selection
Figure 10-9 shows the Native Interface FIFO Page 3 screen to set the optional flags,
handshaking and error injection options.

Equivalent selections in AXI4-Stream FIFO GUI are as follows:

• Optional Flags (Almost Full and Almost Empty) are mapped to TVALID and
TREADY depending on the Enable Handshake Flag Options and Handshake Flag
Options selection on Page 4 of the AXI4-Stream FIFO GUI as shown in Figure 10-10
and Figure 10-11.

• The Write Acknowledge Flag and Valid Flag are not supported in AXI4-Stream FIFOs.

X-Ref Target - Figure 10-9

Figure 10-9: Native Interface FIFO: Page 3 - Optional Flag, Handshaking and Error
Injection Options

X-Ref Target - Figure 10-10

Figure 10-10: AXI4-Stream Interface FIFO: Page 4 - Data Threshold Parameters

X-Ref Target - Figure 10-11

Figure 10-11: AXI4-Stream Interface FIFO: Page 4 - Handshake Flag Options

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 185
UG175 April 24, 2012

• Overflow Flag and Underflow Flag options of Native Interface FIFOs can be set
through similar settings on Page 5 of the AXI4-Stream FIFO GUI, shown in
Figure 10-12.

• Single Bit Error Injection and Double Bit Error Injection options of Native Interface
FIFOs can be set using similar settings on Page 4 of the AXI4-Stream FIFO GUI, as
shown in Figure 10-13.

Initialization and Programmable Options Selection
Figure 10-14 shows the Native Interface FIFO Page 4 screen to set the initialization and
programmable flags.

X-Ref Target - Figure 10-12

Figure 10-12: AXI4-Stream Interface FIFO: Page 5 - Interrupt Flag Options

X-Ref Target - Figure 10-13

Figure 10-13: AXI4-Stream Interface FIFO: Page 4 - Error Injection Options

X-Ref Target - Figure 10-14

Figure 10-14: Native Interface FIFO: Page 4 - Initialization and Programmable
Options

http://www.xilinx.com

186 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Equivalent selection in the AXI4-Stream FIFO GUI are as follows:

• All the options in the Initialization group box of Native Interface FIFO GUI are not
available in AXI4-Stream FIFOs. However, Asynchronous Reset is by default enabled
in AXI4-Stream FIFOs.

• The programmable flags (Programmable Full and Programmable Empty) are mapped
to TVALID and TREADY depending on the Enable Handshake Flag Options and
Handshake Flag Options selection on Page 4 of the AXI4-Stream FIFO GUI, as shown
in Figure 10-15 and Figure 10-16.

Figure 10-17 shows the Native Interface FIFO Page 5 screen to set the data count and
simulation options.

Equivalent selections in the AXI4-Stream FIFO GUI are as follows:

• The Use Extra Logic option is always set to true for AXI4-Stream FIFOs.

• Data Count/Write Data Count/Read Data Count options of Native Interface FIFOs
can be set through the Provide FIFO Occupancy Data Counts option on Page 4 of the
AXI4-Stream FIFO GUI, as shown in Figure 10-18.

X-Ref Target - Figure 10-15

Figure 10-15: AXI4-Stream Interface FIFO: Page 4 - Data Threshold Parameters

X-Ref Target - Figure 10-16

Figure 10-16: AXI4-Stream Interface FIFO: Page 4 - Programmable Flag Options

X-Ref Target - Figure 10-17

Figure 10-17: Native Interface FIFO: Page 5 - Data Count and Simulation Options

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 187
UG175 April 24, 2012

• Depending on the Clocking option set on Page 2 of the AXI4-Stream FIFO GUI,
either Data Count or Write/Read Data Count will be enabled.

• Simulation Options can be set using the a similar option on Page 5 of the AXI4-Stream
FIFO GUI, as shown in Figure 10-19.

Native FIFO to AXI4-Stream FIFO XCO Parameter Map
Table 10-4 shows the correlating parameters for the Native Interface FIFOs and the AXI4-
Stream FIFOs.

X-Ref Target - Figure 10-18

Figure 10-18: AXI4-Stream Interface FIFO: Page 4 - FIFO Occupancy Option

X-Ref Target - Figure 10-19

Figure 10-19: AXI4-Stream Interface FIFO: Page 5 - Simulation Options

Table 10-4: Native FIFO to AXI4-Stream FIFO

Native Interface FIFO
XCO Parameter

Equivalent AXI4-Stream
FIFO XCO Parameter

XCO Value

1 N/A interface_type AXI4

2 N/A axi_type AXI4_Stream

3 almost_empty_flag programmable_empty_type_axis Almost_Empty

4 almost_full_flag programmable_full_type_axis Almost_Full

5 data_count enable_data_counts_axis True, False

clock_type_axi Common_Clock

6 disable_timing_violations disable_timing_violations_axi True, False

7 empty_threshold_assert_value
empty_threshold_assert_
value_axis

4 - 4194302

8 enable_ecc enable_ecc_axis True, False

9 fifo_implementation fifo_implementation_axis

Common_Clock_Block_RAM
Common_Clock_Distributed_RAM

Independent_Clocks_Block_RAM
Independent_Clocks_Distributed_RAM

fifo_application_type_axis Data_FIFO

axis_type FIFO

10 full_threshold_assert_value full_threshold_assert_value_axis 6 - 4194303

11 inject_dbit_error inject_dbit_error_axis True, False

12 inject_sbit_error inject_sbit_error_axis True, False

http://www.xilinx.com

188 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

13 input_data_width enable_tdata True, False

enable_tdest True, False

enable_tid True, False

enable_tkeep True, False

enable_tlast True, False

enable_tready True, False

enable_tstrobe True, False

enable_tuser True, False

tdata_width 23 - 29

tdest_width 1 - 4

tid_width 1 - 8

tkeep_width tdata_width/8

tstrb_width tdata_width/8

tuser_width 1 - 256

14 input_depth input_depth_axis 24 - 216

15 overflow_flag overflow_flag_axi True, False

16 overflow_sense overflow_sense_axi Active_High, Active_Low

17 programmable_empty_type programmable_empty_type_axis

Empty

Almost_Empty

Single_Programmable_Empty_
Threshold_Constant

Single_Programmable_Empty_
Threshold_Input_Port

18 programmable_full_type programmable_full_type_axis

Full, Almost_Full,
Single_Programmable_Full_
Threshold_Constant,
Single_Programmable_Full_
Threshold_Input_Port

19 read_data_count enable_data_counts_axis True, False

clock_type_axi Independent_Clock

20 underflow_flag underflow_flag_axi True, False

21 underflow_sense underflow_sense_axi Active_High, Active_Low

22 write_data_count enable_data_counts_axis True, False

clock_type_axi Independent_Clock

23 data_count_width N/A N/A

Table 10-4: Native FIFO to AXI4-Stream FIFO (Cont’d)

Native Interface FIFO
XCO Parameter

Equivalent AXI4-Stream
FIFO XCO Parameter

XCO Value

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 189
UG175 April 24, 2012

24 dout_reset_value N/A N/A

25 empty_threshold_negate_value N/A N/A

26 enable_reset_synchronization N/A N/A

27 full_flags_reset_value N/A N/A

28 full_threshold_negate_value N/A N/A

29 output_data_width N/A N/A

30 output_depth N/A N/A

31 performance_options N/A N/A

32 read_clock_frequency N/A N/A

33 read_data_count_width N/A N/A

34 reset_pin N/A N/A

35 reset_type N/A N/A

36 use_dout_reset N/A N/A

37 use_embedded_registers N/A N/A

38 use_extra_logic N/A N/A

39 valid_flag N/A N/A

40 valid_sense N/A N/A

41 write_acknowledge_flag N/A N/A

42 write_acknowledge_sense N/A N/A

43 write_clock_frequency N/A N/A

44 write_data_count_width N/A N/A

Table 10-4: Native FIFO to AXI4-Stream FIFO (Cont’d)

Native Interface FIFO
XCO Parameter

Equivalent AXI4-Stream
FIFO XCO Parameter

XCO Value

http://www.xilinx.com

190 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 191
UG175 April 24, 2012

Appendix A

Performance Information

Resource Utilization and Performance
Performance and resource utilization for a FIFO varies depending on the configuration
and features selected during core customization. The following tables show resource
utilization data and maximum performance values for a variety of sample FIFO
configurations.

See “Resource Utilization and Performance” in FIFO Generator Data Sheet for the
performance and resource utilization numbers.

http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ds317.pdf
http://www.xilinx.com

192 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 193
UG175 April 24, 2012

Appendix B

Core Parameters

Native Interface FIFO XCO Parameters
Table B-1 describes the Native FIFO core parameters, including the XCO file value and the
default settings.

Table B-1: Native Interface FIFO XCO Parameter Table

Native FIFO XCO
Parameter Name

XCO File Values Default GUI Settings

interface_type Native, AXI4 Native

almost_empty_flag True, False False

almost_full_flag True, False False

component_name
instance_name

ASCII text starting with a letter and using the
following character set: a-z, 0-9, and _

fifo_generator_v9_1

data_count True, False False

data_count_width 1 – log2(output_depth) 10

disable_timing_violations True, False False

dout_reset_value Hex value in range of 0 to output data width - 1 0

empty_threshold_assert_value
For STD: 2 - 4194300

For FWFT: 4 - 4194302
2

empty_threshold_negate_value
For STD: 3 - 4194301

For FWFT: 5 - 4194303
3

enable_ecc True, False False

enable_reset_synchronization True, False True

fifo_implementation

Common_Clock_Block_RAM

Common_Clock_Distributed_RAM

Common_Clock_Shift_Register

Common_Clock_Builtin_FIFO

Independent_Clocks_Block_RAM

Independent_Clocks_Distributed_RAM

Independent_Clocks_Builtin_FIFO

Common_Clock_Block_RAM

full_flags_reset_value 0, 1 1

http://www.xilinx.com

194 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

full_threshold_assert_value
For STD: 4 - 4194302

For FWFT: 6 - 4194303
1022

full_threshold_negate_value
For STD: 3 - 4194301

For FWFT: 5 - 4194302
1021

inject_dbit_error True, False False

inject_sbit_error True, False False

input_data_width 1 - 1024 18

input_depth 24 - 222 1024

output_data_width 1 - 1024 18

output_depth 24 - 222 1024

overflow_flag True, False False

overflow_sense Active_High, Active_Low Active_High

performance_options
Standard_FIFO (STD), First_Word_Fall_Through
(FWFT)

Standard_FIFO

programmable_empty_type

No_Programmable_Empty_
Threshold

Single_Programmable_Empty_
Threshold_Constant

Multiple_Programmable_Empty_
Threshold_Constants

Single_Programmable_Empty_
Threshold_Input_Port

Multiple_Programmable_Empty_
Threshold_Input_Ports

No_Programmable_
Empty_Threshold

programmable_full_type

No_Programmable_Full_Threshold
Single_Programmable_Full_
Threshold_Constant

Multiple_Programmable_Full_
Threshold_Constants

Single_Programmable_Full_
Threshold_Input_Port

Multiple_Programmable_Full_
Threshold_Input_Ports

No_Programmable_
Full_Threshold

read_clock_frequency 1 - 1000 1

read_data_count True, False False

read_data_count_width 1 – log2(output_depth) 10

reset_pin True, False True

reset_type Synchronous_Reset, Asynchronous_Reset Asynchronous_Reset

Table B-1: Native Interface FIFO XCO Parameter Table (Cont’d)

Native FIFO XCO
Parameter Name

XCO File Values Default GUI Settings

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 195
UG175 April 24, 2012

AXI4 FIFO XCO Parameters
Table B-2 describes the AXI4 FIFO core parameters, including the XCO file value and the
default settings.

underflow_flag True, False False

underflow_sense Active_High, Active_Low Active_High

use_dout_reset True, False False

use_embedded_registers True, False False

use_extra_logic True, False False

valid_flag True, False False

valid_sense Active_High, Active_Low Active_High

write_acknowledge_flag True, False False

write_acknowledge_sense Active_High, Active_Low Active_High

write_clock_frequency 1 – 1000 1

write_data_count True, False False

write_data_count_width 1 – log2(input_depth) 10

Table B-1: Native Interface FIFO XCO Parameter Table (Cont’d)

Native FIFO XCO
Parameter Name

XCO File Values Default GUI Settings

Table B-2: AXI4 FIFO XCO Parameter Table

Parameter Name XCO File Values Default GUI Settings

component_name

instance_name

ASCII text starting with a letter and
using the following character set: a-z, 0-
9, and _

fifo_generator_v9_1

interface_type
Native

AXI4
Native

axi_type
AXI4_Stream

AXI4_Full, AXI4_Lite
AXI4_Stream

enable_write_channel
True

False
True

enable_read_channel
True

False
True

clock_type_axi
Common_Clock

Independent_Clock
Common_Clock

use_clock_enablea True

False
False

http://www.xilinx.com

196 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

clock_enable_typea Slave_Interface_Clock_Enable

Master_Interface_Clock_Enable
Slave_Interface_Clock_Enable

id_width 1 - 8 8

axi_address_width 1 – 32 32

axi_data_width 23 - 29 64

enable_awuser
True

False
False

enable_wuser
True

False
False

enable_buser
True

False
False

enable_aruser
True

False
False

enable_ruser
True

False
False

enable_tuser
True

False
False

awuser_width 1 - 256 1

wuser_width 1 - 256 1

buser_width 1 - 256 1

aruser_width 1 - 256 1

ruser_width 1 - 256 1

tuser_width 1 - 256 4

enable_tdata
True

False
True

enable_tdest
True

False
False

enable_tid
True

False
False

enable_tkeep
True

False
False

enable_tlast
True

False
False

enable_tready
True

False
True

Table B-2: AXI4 FIFO XCO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Settings

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 197
UG175 April 24, 2012

enable_tstrobe
True

False
False

tdata_width 23 - 29 64

tdest_width 1 - 4 4

tid_width 1 - 8 8

tkeep_width tdata_width/8 8

tstrb_width tdata_width/8 8

axis_type FIFO FIFO

wach_type FIFO FIFO

wdch_type FIFO FIFO

wrch_type FIFO FIFO

rach_type FIFO FIFO

rdch_type FIFO FIFO

fifo_implementation_type_axis

Common_Clock_Block_RAM

Common_Clock_Distributed_RAM

Independent_Clock_Block_RAM

Independent_Clock_Distributed_RAM

Common_Clock_Block_RAM

fifo_implementation_type_rach Common_Clock_Distributed_RAM

fifo_implementation_type_rdch Common_Clock_Block_RAM

fifo_implementation_type_wach Common_Clock_Distributed_RAM

fifo_implementation_type_wdch Common_Clock_Block_RAM

fifo_implementation_type_wrch Common_Clock_Distributed_RAM

fifo_application_type_axis Data_FIFO Data_FIFO

fifo_application_type_rach Data_FIFO Data_FIFO

fifo_application_type_rdch Data_FIFO Data_FIFO

fifo_application_type_wach Data_FIFO Data_FIFO

fifo_application_type_wdch Data_FIFO Data_FIFO

fifo_application_type_wrch Data_FIFO Data_FIFO

enable_ecc_axis
True

False
False

enable_ecc_rach
True

False
False

enable_ecc_rdch
True

False
False

Table B-2: AXI4 FIFO XCO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Settings

http://www.xilinx.com

198 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

enable_ecc_wach
True

False
False

enable_ecc_wdch
True

False
False

enable_ecc_wrch
True

False
False

inject_sbit_error_axis
True

False
False

inject_sbit_error_rach
True

False
False

inject_sbit_error_rdch
True

False
False

inject_sbit_error_wach
True

False
False

inject_sbit_error_wdch
True

False
False

inject_sbit_error_wrch
True

False
False

inject_dbit_error_axis
True

False
False

inject_dbit_error_rach
True

False
False

inject_dbit_error_rdch
True

False
False

inject_dbit_error_wach
True

False
False

inject_dbit_error_wdch
True

False
False

inject_dbit_error_wrch
True

False
False

input_depth_axis 24 - 216 1024

input_depth_rach 24 - 216 16

input_depth_rdch 24 - 216 1024

input_depth_wach 24 - 216 16

input_depth_wdch 24 - 216 1024

input_depth_wrch 24 - 216 16

Table B-2: AXI4 FIFO XCO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Settings

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 199
UG175 April 24, 2012

enable_data_counts_axis
True

False
False

enable_data_counts_rach
True

False
False

enable_data_counts_rdch
True

False
False

enable_data_counts_wach
True

False
False

enable_data_counts_wdch
True

False
False

enable_data_counts_wrch
True

False
False

enable_handshake_flag_options_axis
True

False
False

programmable_full_type_axis

No_Programmable_Full_Threshold

Single_Programmable_Full_
Threshold_Constant

Single_Programmable_Full_
Threshold_Input_Port

No_Programmable_Full_Threshold

programmable_full_type_rach No_Programmable_Full_Threshold

programmable_full_type_rdch No_Programmable_Full_Threshold

programmable_full_type_wach No_Programmable_Full_Threshold

programmable_full_type_wdch No_Programmable_Full_Threshold

programmable_full_type_wrch No_Programmable_Full_Threshold

full_threshold_assert_value_axis 5 - 65535 1023

full_threshold_assert_value_rach 5 - 65535 1023

full_threshold_assert_value_rdch 5 - 65535 1023

full_threshold_assert_value_wach 5 - 65535 1023

full_threshold_assert_value_wdch 5 - 65535 1023

full_threshold_assert_value_wrch full_threshold_assert_value_wrch 1023

programmable_empty_type_axis

No_Programmable_Full_Threshold

Single_Programmable_
Empty _Threshold_Constant

Single_Programmable_
Empty _Threshold_Input_Port

No_Programmable_Full_Threshold

programmable_empty_type_rach No_Programmable_Full_Threshold

programmable_empty_type_rdch No_Programmable_Full_Threshold

Table B-2: AXI4 FIFO XCO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Settings

http://www.xilinx.com

200 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Comparison of Native and AXI4 FIFO XCO Parameters
Table B-3 describes the comparison of Native FIFO and AXI4 FIFO XCO parameters,
including the possible values.

programmable_empty_type_wach No_Programmable_Full_Threshold

programmable_empty_type_wdch No_Programmable_Full_Threshold

programmable_empty_type_wrch No_Programmable_Full_Threshold

empty_threshold_assert_value_axis 4 - 65534 1022

empty_threshold_assert_value_rach 4 - 65534 1022

empty_threshold_assert_value_rdch 4 - 65534 1022

empty_threshold_assert_value_wach 4 - 65534 1022

empty_threshold_assert_value_wdch 4 - 65534 1022

empty_threshold_assert_value_wrch 4 - 65534 1022

underflow_flag_axi
True

False
False

underflow_sense_axi
Active_High

Active_Low
Active_High

overflow_flag_axi
True

False
False

overflow_sense_axi
Active_High

Active_Low
Active_High

enable_common_overflow
True

False
False

enable_common_underflowa True

False
False

disable_timing_violations_axi
True

False
False

add_ngc_constraint_axia
True

False
False

a. Feature presently not supported

Table B-2: AXI4 FIFO XCO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Settings

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

1 almost_empty_flag almost_empty_flag True, False

2 almost_full_flag almost_full_flag True, False

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 201
UG175 April 24, 2012

3 data_count data_count True, False

4 data_count_width data_count_width 1 – log2(output_depth)

5 disable_timing_violations disable_timing_violations True, False

6 dout_reset_value dout_reset_value
Any hexadecimal value of width 1 -
1024

7 empty_threshold_assert_value empty_threshold_assert_value
For STD: 2 - 4194300

For FWFT: 4 - 4194302

8 empty_threshold_negate_value empty_threshold_negate_value
For STD: 3 - 4194301

For FWFT: 5 - 4194303

9 enable_ecc enable_ecc True, False

10 enable_reset_synchronization enable_reset_synchronization True, False

11 fifo_implementation fifo_implementation

Common_Clock_Block_RAM
Common_Clock_Distributed_RAM
Common_Clock_Shift_Register

Common_Clock_Builtin_FIFO
Independent_Clocks_Block_RAM
Independent_Clocks_Distributed_RA
M Independent_Clocks_Builtin_FIFO

12 full_flags_reset_value full_flags_reset_value 0, 1

13 full_threshold_assert_value full_threshold_assert_value
For STD: 4 - 4194302

For FWFT: 6 - 4194303

14 full_threshold_negate_value full_threshold_negate_value
For STD: 3 - 4194301

For FWFT: 5 - 4194302

15 inject_dbit_error inject_dbit_error True, False

16 inject_sbit_error inject_sbit_error True, False

17 input_data_width input_data_width 1 - 1024

18 input_depth input_depth 24 - 222

19 output_data_width output_data_width 1 - 1024

20 output_depth output_depth 24 - 222

21 overflow_flag overflow_flag True, False

22 overflow_sense overflow_sense Active_High, Active_Low

23 performance_options performance_options
Standard_FIFO (STD),
First_Word_Fall_Through (FWFT)

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

202 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

24 programmable_empty_type programmable_empty_type

No_Programmable_Empty_Threshold
Single_Programmable_Empty_Thresh
old_Constant
Multiple_Programmable_Empty_Thre
shold_Constants
Single_Programmable_Empty_Thresh
old_Input_Port
Multiple_Programmable_Empty_Thre
shold_Input_Ports

25 programmable_full_type programmable_full_type

No_Programmable_Full_Threshold
Single_Programmable_Full_Threshold
_Constant
Multiple_Programmable_Full_Thresh
old_Constants
Single_Programmable_Full_Threshold
_Input_Port
Multiple_Programmable_Full_Thresh
old_Input_Ports

26 read_clock_frequency read_clock_frequency 1 - 1000

27 read_data_count read_data_count True, False

28 read_data_count_width read_data_count_width 1 – log2(output_depth)

29 reset_pin reset_pin True, False

30 reset_type reset_type
Synchronous_Reset,
Asynchronous_Reset

31 underflow_flag underflow_flag True, False

32 underflow_sense underflow_sense Active_High, Active_Low

33 use_dout_reset use_dout_reset True, False

34 use_embedded_registers use_embedded_registers True, False

35 use_extra_logic use_extra_logic True, False

36 valid_flag valid_flag True, False

37 valid_sense valid_sense Active_High, Active_Low

38 write_acknowledge_flag write_acknowledge_flag True, False

39 write_acknowledge_sense write_acknowledge_sense Active_High, Active_Low

40 write_clock_frequency write_clock_frequency 1 – 1000

41 write_data_count write_data_count True, False

42 write_data_count_width write_data_count_width 1 – log2(input_depth)

43 N/A interface_type Native, AXI4

44 N/A axi_type AXI4_Stream, AXI4_Full, AXI4_Lite

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 203
UG175 April 24, 2012

45 N/A image_type Application_Diagram, Block_Diagram

46 N/A enable_write_channel True, False

47 N/A enable_read_channel True, False

48 N/A clock_type_axi Common_Clock, Independent_Clock

49 N/A use_clock_enable True, False

50 N/A clock_enable_type
Slave_Interface_Clock_Enable,
Master_Interface_Clock_Enable

51 N/A id_width 1 - 8

52 N/A axi_address_width 1 – 32

53 N/A axi_data_width 23 - 29

54 N/A enable_awuser True, False

55 N/A enable_wuser True, False

56 N/A enable_buser True, False

57 N/A enable_aruser True, False

58 N/A enable_ruser True, False

59 N/A enable_tuser True, False

60 N/A awuser_width 1 - 256

61 N/A wuser_width 1 - 256

62 N/A buser_width 1 - 256

63 N/A aruser_width 1 - 256

64 N/A ruser_width 1 - 256

65 N/A tuser_width 1 - 256

66 N/A enable_tdata True, False

67 N/A enable_tdest True, False

68 N/A enable_tid True, False

69 N/A enable_tkeep True, False

70 N/A enable_tlast True, False

71 N/A enable_tready True, False

72 N/A enable_tstrobe True, False

73 N/A tdata_width 23 - 29

74 N/A tdest_width 1 - 4

75 N/A tid_width 1 - 8

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

204 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

76 N/A tkeep_width tdata_width/8

77 N/A tstrb_width tdata_width/8

78 N/A axis_type FIFO

79 N/A wach_type FIFO

80 N/A wdch_type FIFO

81 N/A wrch_type FIFO

82 N/A rach_type FIFO

83 N/A rdch_type FIFO

84 N/A fifo_implementation_type_axis

Common_Clock_Block_RAM

Common_Clock_Distributed_RAM

Independent_Clock_Block_RAM

Independent_Clock_Distributed_RA
M

85 N/A fifo_implementation_type_rach

86 N/A fifo_implementation_type_rdch

87 N/A fifo_implementation_type_wach

88 N/A fifo_implementation_type_wdch

89 N/A fifo_implementation_type_wrch

90 N/A fifo_application_type_axis Data_FIFO

91 N/A fifo_application_type_rach Data_FIFO

92 N/A fifo_application_type_rdch Data_FIFO

93 N/A fifo_application_type_wach Data_FIFO

94 N/A fifo_application_type_wdch Data_FIFO

95 N/A fifo_application_type_wrch Data_FIFO

96 N/A enable_ecc_axis True, False

97 N/A enable_ecc_rach True, False

98 N/A enable_ecc_rdch True, False

99 N/A enable_ecc_wach True, False

100 N/A enable_ecc_wdch True, False

101 N/A enable_ecc_wrch True, False

102 N/A inject_sbit_error_axis True, False

103 N/A inject_sbit_error_rach True, False

104 N/A inject_sbit_error_rdch True, False

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 205
UG175 April 24, 2012

105 N/A inject_sbit_error_wach True, False

106 N/A inject_sbit_error_wdch True, False

107 N/A inject_sbit_error_wrch True, False

108 N/A inject_dbit_error_axis True, False

109 N/A inject_dbit_error_rach True, False

110 N/A inject_dbit_error_rdch True, False

111 N/A inject_dbit_error_wach True, False

112 N/A inject_dbit_error_wdch True, False

113 N/A inject_dbit_error_wrch True, False

114 N/A input_depth_axis 24 - 216

115 N/A input_depth_rach 24 - 216

116 N/A input_depth_rdch 24 - 216

117 N/A input_depth_wach 24 - 216

118 N/A input_depth_wdch 24 - 216

119 N/A input_depth_wrch 24 - 216

120 N/A enable_data_counts_axis True, False

121 N/A enable_data_counts_rach True, False

122 N/A enable_data_counts_rdch True, False

123 N/A enable_data_counts_wach True, False

124 N/A enable_data_counts_wdch True, False

125 N/A enable_data_counts_wrch True, False

126 N/A programmable_full_type_axis

No_Programmable_Full_Threshold,
Single_Programmable_Full_Threshold
_Constant,
Single_Programmable_Full_Threshold
_Input_Port

127 N/A programmable_full_type_rach

128 N/A programmable_full_type_rdch

129 N/A programmable_full_type_wach

130 N/A programmable_full_type_wdch

131 N/A programmable_full_type_wrch

132 N/A full_threshold_assert_value_axis 5 - 65535

133 N/A full_threshold_assert_value_rach 5 - 65535

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

206 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

134 N/A full_threshold_assert_value_rdch 5 - 65535

135 N/A full_threshold_assert_value_wach 5 - 65535

136 N/A full_threshold_assert_value_wdch 5 - 65535

137 N/A full_threshold_assert_value_wrch 5 - 65535

138 N/A programmable_empty_type_axis

No_Programmable_Full_Threshold,
Single_Programmable_Empty
_Threshold_Constant,
Single_Programmable_Empty
_Threshold_Input_Port

139 N/A programmable_empty_type_rach

140 N/A programmable_empty_type_rdch

141 N/A programmable_empty_type_wach

142 N/A programmable_empty_type_wdch

143 N/A programmable_empty_type_wrch

144 N/A empty_threshold_assert_value_axis 4 - 65534

145 N/A empty_threshold_assert_value_rach 4 - 65534

146 N/A empty_threshold_assert_value_rdch 4 - 65534

147 N/A empty_threshold_assert_value_wach 4 - 65534

148 N/A empty_threshold_assert_value_wdch 4 - 65534

149 N/A empty_threshold_assert_value_wrch 4 - 65534

150 N/A underflow_flag_axi True, False

151 N/A underflow_sense_axi Active_High, Active_Low

152 N/A overflow_flag_axi True, False

153 N/A overflow_sense_axi Active_High, Active_Low

154 N/A enable_common_overflow True, False

155 N/A enable_common_underflow True, False

156 N/A disable_timing_violations_axi True, False

157 N/A add_ngc_constraint_axi True, False

Table B-3: Native FIFO and AXI4 FIFO XCO Parameter Comparison (Cont’d)

FIFO Generator
XCO Parameter

Prior to v7.2

FIFO Generator
XCO Parameter

from v7.2 and Later
Possible Values

http://www.xilinx.com

FIFO Generator v9.1 www.xilinx.com 207
UG175 April 24, 2012

Appendix C

DOUT Reset Value Timing

Figure C-1 shows the DOUT reset value for common clock block RAM, distributed RAM
and Shift Register based FIFOs for synchronous reset (SRST), and common clock block
RAM FIFO for asynchronous reset (RST).

Figure C-2 shows the DOUT reset value for common clock distributed RAM and Shift
Register based FIFOs for asynchronous reset (RST).

Figure C-3 shows the DOUT reset value for Kintex-7, Virtex-7, and Virtex-6 FPGA common
clock Built-in FIFOs with Embedded register for asynchronous reset (RST).

X-Ref Target - Figure C-1

Figure C-1: DOUT Reset Value for Synchronous Reset (SRST) and for
Asynchronous Reset (RST) for Common Clock Block RAM Based FIFO

X-Ref Target - Figure C-2

Figure C-2: DOUT Reset Value for Asynchronous Reset (RST) for Common Clock
Distributed/Shift RAM Based FIFO

X-Ref Target - Figure C-3

Figure C-3: DOUT Reset Value for Common Clock Built-in FIFO

CLK

RST/SRST

DOUT Previous value DOUT reset value

CLK

RST

DOUT Previous value DOUT reset value

http://www.xilinx.com

208 www.xilinx.com FIFO Generator v9.1
UG175 April 24, 2012

Figure C-4 shows the DOUT reset value for independent clock block RAM based FIFOs
(RD_RST).

Figure C-5 shows the DOUT reset value for independent clock distributed RAM based
FIFOs (RD_RST).

X-Ref Target - Figure C-4

Figure C-4: DOUT Reset Value for Independent Clock Block RAM Based FIFO

X-Ref Target - Figure C-5

Figure C-5: DOUT Reset Value for Independent Clock Distributed RAM Based FIFO

WR_CLK

WR_RST

DOUT Previous value DOUT reset value

RD_RST

RD_CLK

WR_CLK

WR_RST

DOUT Previous value DOUT reset value

RD_RST

RD_CLK

http://www.xilinx.com

	LogiCORE IP FIFO Generator v9.1
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Technical Support
	Feedback
	FIFO Generator
	Document

	Core Overview
	Native Interface FIFOs
	Native FIFO Feature Overview
	Native FIFO Core Configuration and Implementation
	Native FIFO Generator Feature Summary
	Using Block RAM FIFOs Versus Built-in FIFOs
	Native FIFO Interface Signals

	AXI4 Interface FIFOs
	AXI4 FIFOs Feature Overview
	AXI4 FIFOs Feature Summary
	AXI4 FIFOs Interface Signals

	Generating the Native FIFO Core
	CORE Generator Graphical User Interface
	Interface Type
	Component Name
	Interface Type

	FIFO Implementation
	Performance Options and Data Port Parameters
	Read Mode
	Built-in FIFO Options
	Data Port Parameters
	Implementation Options

	Optional Flags, Handshaking, and Initialization
	Optional Flags
	Handshaking Options
	Error Injection

	Initialization and Programmable Flags
	Initialization
	Programmable Flags

	Data Count
	Data Count Options

	Summary

	Generating the AXI4 FIFO Core
	CORE Generator Graphical User Interface
	AXI4 Interface Selection
	Width Calculation
	Default Settings

	FIFO Configurations
	Programmable Flags
	Data Threshold Parameters

	Common Configurations
	Interrupt Flags

	Summary
	AXI4-Stream Summary
	AXI4 and AXI4-Lite Summary

	Designing with the Core
	General Design Guideline
	Know the Degree of Difficulty
	Understand Signal Pipelining and Synchronization

	Initializing the FIFO Generator
	FIFO Implementations
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO
	Common Clock: Built-in FIFO
	Common Clock FIFO: Block RAM and Distributed RAM
	Common Clock FIFO: Shift Registers

	FIFO Usage and Control
	Write Operation
	Read Operation
	Handshaking Flags
	Programmable Flags
	Data Counts
	Non-symmetric Aspect Ratios
	Embedded Registers in Block RAM and FIFO Macros (Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs)
	Built-in Error Correction Checking
	Built-in Error Injection
	Reset Behavior

	Actual FIFO Depth
	Block RAM, Distributed RAM and Shift RAM FIFOs
	Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-In FIFOs
	Virtex-4 FPGA Built-In FIFOs

	Latency
	Non-Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and FWFT Read Mode Implementations
	Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
	Built-in FIFOs: Independent Clocks and Standard Read Mode Implementations
	Built-in FIFOs: Independent Clocks and FWFT Read Mode Implementations
	Virtex-4 FPGA Built-in FIFO

	Special Design Considerations
	Resetting the FIFO
	Continuous Clocks
	Pessimistic Full and Empty
	Programmable Full and Empty
	Simultaneous Assertion of Full and Empty Flag
	Write Data Count and Read Data Count
	Setup and Hold Time Violations

	Simulating Your Design
	Simulation Models
	Behavioral Models
	Structural Models

	Quick Start Example Design
	Implementing the Example Design
	Simulating the Example Design
	Setting up for Simulation
	Functional Simulation
	Timing Simulation

	Detailed Example Design
	Directory and File Contents
	<project_directory>
	<project_directory>/<component_name>
	<component_name>/example design
	<component_name>/implement
	<component_name>/implement/results
	<component_name>/simulation
	simulation/functional
	simulation/timing

	Implementation Scripts
	Simulation Scripts
	Functional Simulation
	Timing Simulation

	Example Design Configuration
	Demonstration Test Bench
	Test Bench Functionality
	Customizing the Demonstration Test Bench

	Migrating to the Latest Version
	Migrating Older Versions to the Most Recent Version
	Differences between Cores

	Converting Native Interface FIFOs to AXI4 Interface FIFOs
	Component Name and FIFO Implementation Selection
	Read Mode and Data Port Parameters Selection
	Optional Flags and Error Injection Selection
	Initialization and Programmable Options Selection

	Native FIFO to AXI4-Stream FIFO XCO Parameter Map

	Performance Information
	Resource Utilization and Performance

	Core Parameters
	Native Interface FIFO XCO Parameters
	AXI4 FIFO XCO Parameters
	Comparison of Native and AXI4 FIFO XCO Parameters

	DOUT Reset Value Timing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

