Projection and 3D Transformations

CS-184: Computer Graphics
Prof. James O'Brien

Projection

- Process of going from 3D scene to 2D scene
- Studied throughout history (e.g. painters)
- Different types of projection
- Linear
- Orthographic
- Perspective
- Nonlinear
- Many other "types" of linear mentioned in books - Just special cases of orthographic or perspective

Linear Projection

-A 2D view

Perspective

Linear Projection

. A 2D view
Note how different things can be seen

Perspective

Orthographic

Orthographic Projection

- No foreshortening
- Parallel lines stay parallel

- Examples:

Orthographic Projection

- Assume looking down -Z axis
- "Z is in your face"
- View center at the origin
- View region is box defined by
[$-1,-1,-1]$ and $[1,1,1]$

Throw X and Y coordinates map to normalized view port

Orthographic Projection

- Converting to canonical view setup

Orthographic Projection

Origin

Orthographic Projection

Step 1: translate center to origin

10

Orthographic Projection

Step 3: Center view volume
Step 4: Scale view volume

Orthographic Projection

Step 1: translate center to origin
Step 2: Rotate so that view aligns with -Z axis and up with + Y axis
Step 3: Center view volume
Step 4: Scale view volume

$$
\mathbf{M}=\mathbf{S T}_{2} \mathbf{R} \mathbf{T}_{1}
$$

Orthographic Projection

Step 1: translate center to origin
Step 2: Rotate so that view aligns with -Z axis and up with + Y axis
Step 3: Center view volume
Step 4: Scale view volume $\mathbf{M}_{\mathbf{o}}$

Window Transformation

- Convert from $[-1,-1],[+1,+1]$ window region to image space

Pixel centers offset by 0.5 (e.g. $0.5,1.5,2.5 \ldots$ MaxX- 0.5)
$\mathbf{M}_{\mathbf{w}}=$ Translate and scale

Detour: 3D Transformations

- With the exception of rotations, basically the same as in 2D:

$$
\tilde{\mathbf{A}}=\left[\begin{array}{lll}
& & t_{x} \\
\mathbf{A} & t_{y} \\
\mathbf{0} & \mathbf{0} & 1
\end{array}\right]
$$

A is 2×2

Detour: 3D Transformations

- Axis-aligned scales are still diagonal
- Rotations still orthonormal w/ Det $=+1$
- Shear is a composition of rotation and scale
- SVD and polar decomposition have the same properties

BUT:

- More than one way to rotate
- Can rotate about any axis in space
- 3 DOF for rotation, not just 1

Detour: 3D Rotations

. 2D implicitly rotating about axis "out of the page"

$$
\left[\begin{array}{cc}
\operatorname{Cos}(\theta) & -\operatorname{Sin}(\theta) \\
\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta)
\end{array}\right]
$$

Detour: 3D Rotations

Rotation Matrix Trivia:

- AKA direction-cosine matrices
- Orthonormal
- Det $=+1$
- One real eigenvalue $=1$
- Corresponding eigenvector is axis of rotation
. Unique

Detour: 3D Rotations

Euler Angles

- Any rotation can be composed of one rotations about each of the primary axes

$$
\mathbf{R}=\mathbf{R}_{\mathrm{z}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}}
$$

- Allows tumbling
- Suffers from gimbal-lock
- Non-unique

Detour: 3D Rotations

Angular Displacement

- AKA: exponential map, axis-angle
- Rotate θ degrees about axis
- θ is given by the length of the vector

Detour: 3D Rotations

Angular Displacement

- Method 1 to arrive at rotation matrix

1. Rotate axis about X axis into $\mathrm{X}-\mathrm{Y}$ plane
2. Rotate axis about Z axis to align with X axis
3. Rotate θ about X axis
4. Undo step 2
5. Undo step 3

- Composite 5.4.3.2.1 together

Detour: 3D Rotations

Angular Displacement

- Method 2 to arrive at rotation matrix

Detour: 3D Rotations

Angular Displacement

- Method 2 to arrive at rotation matrix
- $\mathbf{X}_{\|}$does not change
- \mathbf{X}_{\perp} rotates like 2D rotation

Detour: 3D Rotations

Angular Displacement

- Method 2 to arrive at rotation matrix

$$
\begin{aligned}
x^{\prime} & =\hat{\boldsymbol{r}}(\hat{\boldsymbol{r}} \cdot \boldsymbol{x}) \\
& +\sin (\|\boldsymbol{r}\|)(\hat{\boldsymbol{r}} \times \dot{\boldsymbol{x}}) \\
& -\cos (\|\boldsymbol{r}\|)(\hat{\boldsymbol{r}} \times(\hat{\boldsymbol{r}} \times \boldsymbol{x}))
\end{aligned}
$$

Detour: 3D Rotations

Angular Displacement

- Allows tumbling
- No gimbal lock
- Orientations are space within π radius ball
- Nearly unique representation
- Singularities are shells at 2π
- Nice for interpolation

Detour: 3D Rotations

Quaternions

$$
\begin{gathered}
q=\left(v_{1}, v_{2}, v_{3}, s\right)=(\boldsymbol{v}, s) \\
=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}+s \\
\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=-1 \\
\boldsymbol{i} \boldsymbol{j}=k \quad \boldsymbol{j} \boldsymbol{i}=-k \\
\boldsymbol{j} \boldsymbol{k}=i \quad \boldsymbol{k} \boldsymbol{j}=-i \\
\boldsymbol{k} \boldsymbol{i}=j \quad \boldsymbol{i} \boldsymbol{k}=-j
\end{gathered}
$$

Detour: 3D Rotations

Quaternions

- Multiplication

$$
q \cdot p=\left(s_{q} \boldsymbol{v}_{p}+s_{p} \boldsymbol{v}_{q}+\boldsymbol{v}_{p} \times \boldsymbol{v}_{q}, s_{q} s_{p}-\boldsymbol{v}_{p} \cdot \boldsymbol{v}_{q}\right)
$$

- Conjugate

$$
\bar{q}=(-\boldsymbol{v}, s)
$$

. Mgnitude

$$
\|q\|^{2}=s^{2}+\boldsymbol{v} \cdot \boldsymbol{v}=q \cdot \bar{q}
$$

Detour: 3D Rotations

Quaternions

- Represent vectors with

$$
x=(\boldsymbol{x}, 0)
$$

- Represent rotation with

$$
\begin{aligned}
r & =(\hat{\boldsymbol{r}} \sin \theta / 2, \cos \theta / 2) \\
& =(\hat{\boldsymbol{r}} \sin \|\boldsymbol{r}\| / 2, \cos \|\boldsymbol{r}\| / 2)
\end{aligned}
$$

Detour: 3D Rotations

Quaternions

- Rotate a point using quaternions

$$
x^{\prime}=r \cdot x \cdot \bar{r}
$$

- Compose rotations

$$
r=r_{2} \cdot r_{1}
$$

Detour: 3D Rotations

Quaternions

- No tumbling
- No gimbal lock
- Orientations are 3D sphere in R4
- Double representation
- No singularities
- Nice for interpolation

Detour: 3D Rotations

- Relationship between exponential maps and quaternions...

Detour: 3D Rotations

- Consider

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns of rotation matrix are axes of coordinate system after rotation
- Rows are original axes expressed in the rotated coordinate system

Orthographic Projection (back from a long deour)

Step 1: translate center to origin
Step 2: Rotate so that view aligns with -Z axis and up with + Y axis
Step 3: Center view volume
Step 4: Scale view volume

Orthographic Projection

Step 2: Rotate so that view aligns with -Z axis and up with $+Y$ axis
$\mathbf{R}=\left[\begin{array}{lll}\operatorname{Right}_{x} & \mathrm{Up}_{x} & - \text { View }_{x} \\ \operatorname{Right}_{y} & \mathrm{Up}_{y} & - \text { View }_{y} \\ \text { Right }_{z} & \mathrm{Up}_{z} & - \text { View }_{z}\end{array}\right]^{\top}$

Perspective Projection

- Foreshortening: distant things are smaller

Perspective Projection

- Draw "film" in front or pinhole

Perspective Projection

- Vanishing points
- Depend on scene, not intrinsic to camera

Perspective Projection

- Vanishing points
- Depend on scene, not intrinsic to camera

Perspective Projection

- Vanishing points
- Depend on scene, not intrinsic to camera

Perspective Projection

Perspective Projection

Step 1: Translate Center to origin

Perspective Projection

Step 3: Shear so that center-line moves to -Z axis

Perspective Projection

Step 5: Perspective

- Vanishing points limits

