#----------------------------------------------------------------------------- # Copyright (c) 2010 Raymond L. Buvel # Copyright (c) 2010 Craig McQueen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- '''Unit tests for crcmod functionality''' import unittest import binascii from crcmod import mkCrcFun, Crc try: from crcmod.crcmod import _usingExtension from crcmod.predefined import PredefinedCrc from crcmod.predefined import mkPredefinedCrcFun from crcmod.predefined import _crc_definitions as _predefined_crc_definitions except ImportError: from crcmod import _usingExtension from predefined import PredefinedCrc from predefined import mkPredefinedCrcFun from predefined import _crc_definitions as _predefined_crc_definitions #----------------------------------------------------------------------------- # This polynomial was chosen because it is the product of two irreducible # polynomials. # g8 = (x^7+x+1)*(x+1) g8 = 0x185 #----------------------------------------------------------------------------- # The following reproduces all of the entries in the Numerical Recipes table. # This is the standard CCITT polynomial. g16 = 0x11021 #----------------------------------------------------------------------------- g24 = 0x15D6DCB #----------------------------------------------------------------------------- # This is the standard AUTODIN-II polynomial which appears to be used in a # wide variety of standards and applications. g32 = 0x104C11DB7 #----------------------------------------------------------------------------- # I was able to locate a couple of 64-bit polynomials on the web. To make it # easier to input the representation, define a function that builds a # polynomial from a list of the bits that need to be turned on. def polyFromBits(bits): p = 0L for n in bits: p = p | (1L << n) return p # The following is from the paper "An Improved 64-bit Cyclic Redundancy Check # for Protein Sequences" by David T. Jones g64a = polyFromBits([64, 63, 61, 59, 58, 56, 55, 52, 49, 48, 47, 46, 44, 41, 37, 36, 34, 32, 31, 28, 26, 23, 22, 19, 16, 13, 12, 10, 9, 6, 4, 3, 0]) # The following is from Standard ECMA-182 "Data Interchange on 12,7 mm 48-Track # Magnetic Tape Cartridges -DLT1 Format-", December 1992. g64b = polyFromBits([64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37, 35, 33, 32, 31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7, 4, 1, 0]) #----------------------------------------------------------------------------- # This class is used to check the CRC calculations against a direct # implementation using polynomial division. class poly: '''Class implementing polynomials over the field of integers mod 2''' def __init__(self,p): p = long(p) if p < 0: raise ValueError('invalid polynomial') self.p = p def __long__(self): return self.p def __eq__(self,other): return self.p == other.p def __ne__(self,other): return self.p != other.p # To allow sorting of polynomials, use their long integer form for # comparison def __cmp__(self,other): return cmp(self.p, other.p) def __nonzero__(self): return self.p != 0L def __neg__(self): return self # These polynomials are their own inverse under addition def __invert__(self): n = max(self.deg() + 1, 1) x = (1L << n) - 1 return poly(self.p ^ x) def __add__(self,other): return poly(self.p ^ other.p) def __sub__(self,other): return poly(self.p ^ other.p) def __mul__(self,other): a = self.p b = other.p if a == 0 or b == 0: return poly(0) x = 0L while b: if b&1: x = x ^ a a = a<<1 b = b>>1 return poly(x) def __divmod__(self,other): u = self.p m = self.deg() v = other.p n = other.deg() if v == 0: raise ZeroDivisionError('polynomial division by zero') if n == 0: return (self,poly(0)) if m < n: return (poly(0),self) k = m-n a = 1L << m v = v << k q = 0L while k > 0: if a & u: u = u ^ v q = q | 1L q = q << 1 a = a >> 1 v = v >> 1 k -= 1 if a & u: u = u ^ v q = q | 1L return (poly(q),poly(u)) def __div__(self,other): return self.__divmod__(other)[0] def __mod__(self,other): return self.__divmod__(other)[1] def __repr__(self): return 'poly(0x%XL)' % self.p def __str__(self): p = self.p if p == 0: return '0' lst = { 0:[], 1:['1'], 2:['x'], 3:['1','x'] }[p&3] p = p>>2 n = 2 while p: if p&1: lst.append('x^%d' % n) p = p>>1 n += 1 lst.reverse() return '+'.join(lst) def deg(self): '''return the degree of the polynomial''' a = self.p if a == 0: return -1 n = 0 while a >= 0x10000L: n += 16 a = a >> 16 a = int(a) while a > 1: n += 1 a = a >> 1 return n #----------------------------------------------------------------------------- # The following functions compute the CRC using direct polynomial division. # These functions are checked against the result of the table driven # algorithms. g8p = poly(g8) x8p = poly(1L<<8) def crc8p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x8p%g8p) g16p = poly(g16) x16p = poly(1L<<16) def crc16p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x16p%g16p) g24p = poly(g24) x24p = poly(1L<<24) def crc24p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x24p%g24p) g32p = poly(g32) x32p = poly(1L<<32) def crc32p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x32p%g32p) g64ap = poly(g64a) x64p = poly(1L<<64) def crc64ap(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x64p%g64ap) g64bp = poly(g64b) def crc64bp(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x64p%g64bp) class KnownAnswerTests(unittest.TestCase): test_messages = [ 'T', 'CatMouse987654321', ] known_answers = [ [ (g8,0,0), (0xFE, 0x9D) ], [ (g8,-1,1), (0x4F, 0x9B) ], [ (g8,0,1), (0xFE, 0x62) ], [ (g16,0,0), (0x1A71, 0xE556) ], [ (g16,-1,1), (0x1B26, 0xF56E) ], [ (g16,0,1), (0x14A1, 0xC28D) ], [ (g24,0,0), (0xBCC49D, 0xC4B507) ], [ (g24,-1,1), (0x59BD0E, 0x0AAA37) ], [ (g24,0,1), (0xD52B0F, 0x1523AB) ], [ (g32,0,0), (0x6B93DDDB, 0x12DCA0F4) ], [ (g32,0xFFFFFFFFL,1), (0x41FB859FL, 0xF7B400A7L) ], [ (g32,0,1), (0x6C0695EDL, 0xC1A40EE5L) ], [ (g32,0,1,0xFFFFFFFF), (0xBE047A60L, 0x084BFF58L) ], ] def test_known_answers(self): for crcfun_params, v in self.known_answers: crcfun = mkCrcFun(*crcfun_params) self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC parameters %s, input ''" % (crcfun_params,)) for i, msg in enumerate(self.test_messages): self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) class CompareReferenceCrcTest(unittest.TestCase): test_messages = [ '', 'T', '123456789', 'CatMouse987654321', ] test_poly_crcs = [ [ (g8,0,0), crc8p ], [ (g16,0,0), crc16p ], [ (g24,0,0), crc24p ], [ (g32,0,0), crc32p ], [ (g64a,0,0), crc64ap ], [ (g64b,0,0), crc64bp ], ] @staticmethod def reference_crc32(d, crc=0): """This function modifies the return value of binascii.crc32 to be an unsigned 32-bit value. I.e. in the range 0 to 2**32-1.""" # Work around the future warning on constants. if crc > 0x7FFFFFFFL: x = int(crc & 0x7FFFFFFFL) crc = x | -2147483648 x = binascii.crc32(d,crc) return long(x) & 0xFFFFFFFFL def test_compare_crc32(self): """The binascii module has a 32-bit CRC function that is used in a wide range of applications including the checksum used in the ZIP file format. This test compares the CRC-32 implementation of this crcmod module to that of binascii.crc32.""" # The following function should produce the same result as # self.reference_crc32 which is derived from binascii.crc32. crc32 = mkCrcFun(g32,0,1,0xFFFFFFFF) for msg in self.test_messages: self.assertEqual(crc32(msg), self.reference_crc32(msg)) def test_compare_poly(self): """Compare various CRCs of this crcmod module to a pure polynomial-based implementation.""" for crcfun_params, crc_poly_fun in self.test_poly_crcs: # The following function should produce the same result as # the associated polynomial CRC function. crcfun = mkCrcFun(*crcfun_params) for msg in self.test_messages: self.assertEqual(crcfun(msg), crc_poly_fun(msg)) class CrcClassTest(unittest.TestCase): """Verify the Crc class""" msg = 'CatMouse987654321' def test_simple_crc32_class(self): """Verify the CRC class when not using xorOut""" crc = Crc(g32) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0xFFFFFFFF xorOut = 0x00000000 crcValue = 0xFFFFFFFF''' self.assertEqual(str(crc), str_rep) self.assertEqual(crc.digest(), '\xff\xff\xff\xff') self.assertEqual(crc.hexdigest(), 'FFFFFFFF') crc.update(self.msg) self.assertEqual(crc.crcValue, 0xF7B400A7L) self.assertEqual(crc.digest(), '\xf7\xb4\x00\xa7') self.assertEqual(crc.hexdigest(), 'F7B400A7') # Verify the .copy() method x = crc.copy() self.assertTrue(x is not crc) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0xFFFFFFFF xorOut = 0x00000000 crcValue = 0xF7B400A7''' self.assertEqual(str(crc), str_rep) self.assertEqual(str(x), str_rep) def test_full_crc32_class(self): """Verify the CRC class when using xorOut""" crc = Crc(g32, initCrc=0, xorOut= ~0L) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x00000000''' self.assertEqual(str(crc), str_rep) self.assertEqual(crc.digest(), '\x00\x00\x00\x00') self.assertEqual(crc.hexdigest(), '00000000') crc.update(self.msg) self.assertEqual(crc.crcValue, 0x84BFF58L) self.assertEqual(crc.digest(), '\x08\x4b\xff\x58') self.assertEqual(crc.hexdigest(), '084BFF58') # Verify the .copy() method x = crc.copy() self.assertTrue(x is not crc) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x084BFF58''' self.assertEqual(str(crc), str_rep) self.assertEqual(str(x), str_rep) # Verify the .new() method y = crc.new() self.assertTrue(y is not crc) self.assertTrue(y is not x) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x00000000''' self.assertEqual(str(y), str_rep) class PredefinedCrcTest(unittest.TestCase): """Verify the predefined CRCs""" test_messages_for_known_answers = [ '', # Test cases below depend on this first entry being the empty string. 'T', 'CatMouse987654321', ] known_answers = [ [ 'crc-aug-ccitt', (0x1D0F, 0xD6ED, 0x5637) ], [ 'x-25', (0x0000, 0xE4D9, 0x0A91) ], [ 'crc-32', (0x00000000, 0xBE047A60, 0x084BFF58) ], ] def test_known_answers(self): for crcfun_name, v in self.known_answers: crcfun = mkPredefinedCrcFun(crcfun_name) self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC '%s', input ''" % crcfun_name) for i, msg in enumerate(self.test_messages_for_known_answers): self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) def test_class_with_known_answers(self): for crcfun_name, v in self.known_answers: for i, msg in enumerate(self.test_messages_for_known_answers): crc1 = PredefinedCrc(crcfun_name) crc1.update(msg) self.assertEqual(crc1.crcValue, v[i], "Wrong answer for crc1 %s, input '%s'" % (crcfun_name,msg)) crc2 = crc1.new() # Check that crc1 maintains its same value, after .new() call. self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg)) # Check that the new class instance created by .new() contains the initialisation value. # This depends on the first string in self.test_messages_for_known_answers being # the empty string. self.assertEqual(crc2.crcValue, v[0], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg)) crc2.update(msg) # Check that crc1 maintains its same value, after crc2 has called .update() self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg)) # Check that crc2 contains the right value after calling .update() self.assertEqual(crc2.crcValue, v[i], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg)) def test_function_predefined_table(self): for table_entry in _predefined_crc_definitions: # Check predefined function crc_func = mkPredefinedCrcFun(table_entry['name']) calc_value = crc_func("123456789") self.assertEqual(calc_value, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name']) def test_class_predefined_table(self): for table_entry in _predefined_crc_definitions: # Check predefined class crc1 = PredefinedCrc(table_entry['name']) crc1.update("123456789") self.assertEqual(crc1.crcValue, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name']) def runtests(): print "Using extension:", _usingExtension print unittest.main() if __name__ == '__main__': runtests()