
CS	61C:	
Great	Ideas	in	Computer	Architecture

Lecture	4:	Memory	Management

Krste	Asanović	&	Randy	Katz
http://inst.eecs.berkeley.edu/~cs61c

Agenda
• Pointers	to	Pointers
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 2

Pointers	to	Pointers

CS	61c 3

Your	Turn	…
int x[] = { 2, 4, 6, 8, 10 };

int *p = x;

int **pp = &p;

(*pp)++;

(*(*pp))++;

printf("%d\n", *p);

4

Name Type Addr Value
…
106
105
104
103
102
101
100
…

Answer
RED 2

GREEN 3

ORANGE 4

5

Agenda
• Pointers	to	Pointers
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c 5

C	Strings

• C	strings	are	null-terminated	
character	arrays
− char s[] = ”abc”;

CS	61c Lecture	3:	Pointers 6

Type Name Byte
Addr

Value

…
108
107
106
105
104
103
102
101
100
…

String	Example

CS	61c 7

Output:				str =	abc,		length	=	3

Concise	strlen()
int strlen(char *s) {

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What	happens	if	there	is	no	zero	character	at	end	of	string?
8CS	61c

Arguments	in	main()
• To	get	arguments	to	the	main	function,	use:

− int main(int argc, char *argv[])
− argc is	the	number of	strings	on	the	command	line
− argv is	a	pointer	to	an	array	containing	the	arguments	as	strings

9CS	61c

Example

10CS	61c

UNIX: $ gcc -o ex Argc.c
$./ex -g a "d e f”
arg[0] = ./ex
arg[1] = -g
arg[2] = a
arg[3] = d e f

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 11

C	Memory	Management
• How	does	the	C	compiler	
determine	where	to	put	code	
and	data	in	the	machine’s	
memory?
• How	can	we	create	
dynamically	sized	objects?
− E.g.	array	of	variable	size	depending	
on	requirements

CS	61c Lecture	4:	Memory	Management 12

currently	unused	but	
available memory

code

static	data

heap

stack
~ FFFF FFFFhex

~ 0000 0000hex

Sample	Layout
(32-bit	addresses)

C	Memory	Management:	Code

CS	61c 13

• Code
− Loaded	when	program	starts
− Does	not	change

currently	unused	but	
available memory

code

static	data

heap

stack
~ FFFF FFFFhex

~ 0000 0000hex

Sample	Layout
(32-bit	addresses)

C	Memory	Management:	Static	Data

CS	61c 14

• Static	Data
− Loaded	when	program	starts
− Can	be	modified
− Size	is	fixed currently	unused	but	

available memory

code

static	data

heap

stack
~ FFFF FFFFhex

~ 0000 0000hex

Sample	Layout
(32-bit	addresses)

C	Memory	Management:	Stack

CS	61c 15

• Stack
− Local	variables	&	arguments	inside	

functions
− Allocated	when	function	is	called
− Stack	usually	grows	downward

currently	unused	but	
available memory

code

static	data

heap

stack
~ FFFF FFFFhex

~ 0000 0000hex

Sample	Layout
(32-bit	addresses)

C	Memory	Management:	Heap

CS	61c 16

• Heap
− Space	for	dynamic	data
− Allocated	and	freed	by	program	
as	needed

currently	unused	but	
available memory

code

static	data

heap

stack
~ FFFF FFFFhex

~ 0000 0000hex

Sample	Layout
(32-bit	addresses)

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 17

Frame	main
Frame	b
int arg;

int b_local;Frame	b
int arg;

int b_local;

Frame	a
int a_local;

Stack

CS	61c Lecture	4:	Memory	Management 18

Stack	Pointer

Stack	Pointer

Stack	Pointer

Stack	Pointer

Stack
• Every	time	a	function	is	called,	a	new	frame	is	allocated
• When	the	function	returns,	the	frame	is	deallocated
• Stack	frame	contains

− Function	arguments
− Local	variables
− Return	address	(who	called	me?)

• Stack	uses	contiguous	blocks	of	memory
− Stack	pointer	indicates	current	level	of	stack

• Stack	management	is	transparent	to	C	programmer
− We’ll	see	details	when	we	program	assembly	language

CS	61c Lecture	4:	Memory	Management 19

Your	Turn	…
Right	after	the	printf executes	but	
before	the	return 0,	how	many	
copies	of	x and	y are allocated	in	
memory?

CS	61c Lecture	4:	Memory	Management 20

Answer #x #y
RED 1 1

GREEN 1 6

ORANGE 1 5

6 6

What’s	wrong	with	this	Code?
• *a is	a	pointer	to	a	local	variable

− allocated	on	the	stack
− “deallocated”	when	f() returns
− stack	reused	by	other	functions

§ e.g.	cos
§ which	overwrite	whatever	was	there	

before
− *a points	to	“garbage”

• Obscure	errors
− depend	on	what	other	functions	are	

called	after	f() returns
− assignments	to	*a corrupt	the	stack	and	

can	result	in	even	more	bizarre	behavior	
than	this	example

− errors	can	be	difficult	to	reproduce

CS	61c Lecture	4:	Memory	Management 21

Output:
a = -1085663214

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Not	on	the	test!
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…

CS	61c Lecture	4:	Memory	Management 22

Early	Memory	Technology

CS	61c Lecture	4:	Memory	Management 23

Punched	cards,	From	early	
1700s	through	Jaquard Loom,	
Babbage,	and	then	IBM

Babbage,	1800s:	Digits	
stored	on	mechanical	wheels

Early	Memory	technology

CS	61c Lecture	4:	Memory	Management 24

Williams	Tube,	
Manchester	Mark	1,	1947

Mercury	Delay	Line,	Univac	1,	1951

Punched	paper	tape,	
instruction	stream	in	
Harvard	Mk	1

MIT	Whirlwind	Core	Memory

25

Modern	DRAM	Technology

CS	61c Lecture	4:	Memory	Management 26
46nm	DDR2	DRAM	[©	Chipworks]	

Break!

9/5/17 27Fall	2017 - Lecture	#3

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 28

Managing	the	Heap
C	functions	for	heap	management:

• malloc() allocate	a	block	of	uninitialized	memory
• calloc() allocate	a	block	of	zeroed	memory
• free() free	previously	allocated	block	of	memory
• realloc() change	size	of	previously	allocated	block

• Beware:	
previously	allocated	contents	might	move!

CS	61c Lecture	4:	Memory	Management 29

Malloc()
• void *malloc(size_t n):

– Allocate	a	block	of	uninitialized	memory
– n is	an	integer,	indicating	size	of	requested	memory	block	in	bytes
– size_t is	an	unsigned	integer	type	big	enough	to	“count”	memory	bytes
– Returns	void* pointer	to	block
– NULL return	indicates	no	more	memory

• Example:		

CS	61c Lecture	4:	Memory	Management 30

What’s	wrong	with	this	Code?

$ gcc FreeBug.c; ./a.out
a.out(23562,0x7fff78748000) malloc:
*** error for object 0x7fdcb3403168:

pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

CS	61c Lecture	4:	Memory	Management 31

free()

CS	61c Lecture	4:	Memory	Management 32

• void free(void *p):
− Release	memory	allocated	by	malloc()
− pmust contain	address	originally	returned by	malloc()

• Example:

Fix

• Do	not	modify	return	value	from	malloc
− You’ll	need	it	to	call	free!

CS	61c Lecture	4:	Memory	Management 33

Why	Call	free()?
• Recycle	no-longer-used	memory	to	avoid	running	out
• Two	common	approaches:

− malloc/free	(Explicit	memory	management)
§ C,	C++,	…
§ ”manually”	take	care	of	releasing	memory
§ Requires	some	planning:	how	do	I	know	that	memory	is	no	longer	used?	What	if	I	forget	to	release?
§ Drawback:	potential	bugs

o memory	leaks	(forgot	to	call	free)
o corrupted	memory	(accessing	memory	that	is	now	longer	“owned”)

− garbage	collector	(Automatic	memory	management)
§ Java,	Python,	…
§ No-longer-used	memory	is	free’d	automatically
§ Drawbacks:	

o performance	hit
o unpredictable:	

Ø what	if	garbage	collector	starts	when	a	self-driving	car	enters	a	turn	at	100mph?

CS	61c

Out	of	Memory

CS	61c Lecture	4:	Memory	Management 35

• Insufficient	free	memory:	malloc() returns	NULL

$ gcc OutOfMemory.c; ./a.out
failed to allocate > 131.064 TiBytes

Example:	Dynamically	Allocated	Tree

36

Root
Key=10

Left Right

Key=5
Left Right

Key=16
Left Right

Key=11
Left Right

CS	61c

malloc and	free are	buddies!
malloc and free

• If	you	call	malloc somewhere,	
you’ll	need	to	call	free on	the	
result	(or	accept	having	memory	
leak)

• E.g.
int *p = malloc(…);
// potentially very
// complicated code
// when done, call:
free(p);

no malloc,	no free

• If	you	have	not	called	malloc,	do	
not	call	free!

• E.g.
int x;
int *p = &x;
// do whatever with p,
// but do not call free!
int a[5];
// do whatever with a, but
// do not call free(a)!

CS	61c Lecture	4:	Memory	Management 37

Observations
• Code,	Static	storage	are	easy:	

− they	never	grow	or	shrink
− taken	care	of	by	OS

• Stack	space	is	relatively	easy:	
− stack	frames	are	created	and	destroyed	in	
last-in,	first-out	(LIFO)	order

− transparent	to	programmer
− but	don’t	hold	onto	it	(with	pointer)	after	function	returns!

• Managing	the	heap	is	the	programmer’s	task:	
− memory	can	be	allocated	/	deallocated	at	any	time
− how	tell	/	ensure	that	a	block	of	memory	is	no	longer	used	anywhere in	the	
program?

− requires	planning	before	coding	…

38CS	61c Lecture	4:	Memory	Management

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 39

How	are	Malloc/Free	implemented?
• Underlying	operating	system	allows	malloc library	to	
ask	for	large	blocks	of	memory	to	use	in	heap	
− E.g.,	using	Unix	sbrk() call

• C	standard	malloc library	creates	data	structure	inside	
unused	portions	of	the	heap	to	track	free	space
−Writing	to	unallocated	(or	free’d)	memory	can	corrupt	this	
data	structure.	

−Whose	fault	is	it?	The	library’s?

CS	61c Lecture	4:	Memory	Management 40

Simple	malloc() Implementation

41

Initial	Empty	Heap	space	from	Operating	System

Free	Space

Malloc	library	creates	linked	list	of	empty	blocks	(one	block	initially)

FreeObject	1

Free

First	allocation	chews	up	space	from	start	of	free	space

CS	61c Lecture	4:	Memory	Management

Problems	after	many	malloc’s and	free’s:
• Memory	fragmentation	(many	small	and	no	big	free	blocks,	merge?)
• Long	chain	of	blocks	(slow	to	traverse)

Better	malloc Implementations
• Keep	separate	pools	of	blocks	for	different	sized	objects
• E.g.	“Buddy	allocators”	always	round	up	to	power-of-2	
sized	chunks	to	simplify	finding	correct	size	and	merging	
neighboring	blocks
− https://en.wikipedia.org/wiki/Buddy_memory_allocation

42CS	61c Lecture	4:	Memory	Management

Power-of-2	“Buddy	Allocator”

43CS	61c Lecture	4:	Memory	Management

Tim
e

https://en.wikipedia.org/wiki/Buddy_memory_allocation

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 44

Common	Memory	Problems
• Using	uninitialized	values
• Using	memory	that	you	don’t	own

− De-allocated	stack	or	heap	variable
− Out-of-bounds	reference	to	array
− Using	NULL or	garbage	data	as	a	pointer

• Improper	use	of	free/realloc by	messing	with	the	
pointer	returned	by	malloc/calloc
• Memory	leaks

− you	allocated	something	but	forgot	to	free	it	later

CS	61c Lecture	4:	Memory	Management 45

Assignment	to	free’d Memory
Code Output

$ gcc test.c
$./a.out
a=55, b=55 (==128!)

• Assignment	to a corrupts b
− or	something	else	happens	that	is	
even	more	undesirable

• Error	may	go	undetected!

CS	61c Lecture	4:	Memory	Management 46

“Defensive”	Programming
Code Output

$./a.out
Segmentation fault: 11

• Problem	is	evident
• But	where	is	the	error?

− May	not	be	obvious	in	a	BIG	program

CS	61c Lecture	4:	Memory	Management 47

Debugger	(gdb)
$ gcc -g DefensiveB.c
$ gdb a.out
GNU gdb (GDB) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.
Reading symbols from a.out...Reading symbols from
/a.out.dSYM/Contents/Resources/DWARF/a.out...done.

(gdb) run
Starting program: /defensiveB/a.out

Program received signal SIGSEGV, Segmentation fault.
0x0000000100000f76 in main () at DefensiveB.c:11
11 *a = 55;
(gdb)

CS	61c Lecture	4:	Memory	Management 48

What’s	wrong	with	this	code?
Warning:
• This particular result (with realloc)	

is a	coincidence.	If run	again,	or on	a	
different computer,	the result may
differ.

• After realloc,	b is no	longer valid and	
points to	memory it does not	own.

• Using	b	after	calling	realloc is	a	
.	Do	not	program	like	this!

CS	61c Lecture	4:	Memory	Management 49

Output:
a[0]=1, b[0]=2, c[0]=2
a = 0x7fc53b802600
b = 0x7fc53b403140
c = 0x7fc53b403140

Output: realloc commented out
a[0]=2, b[0]=2, c[0]=3
a = 0x7f9bdbc04be0
b = 0x7f9bdbc04be0
c = 0x7f9bdbc04c10

How	many	errors	in	this	code?

CS	61c Lecture	4:	Memory	Management 50

Upcase Fixed

CS	61c Lecture	4:	Memory	Management 51

str=	Nice	weather	today!
up	=	NICE	WEATHER	TODAY!

Output:

Still	need	strategy	for	freeing
memory.	Caller	is	responsible	…

What’s	wrong	with	this	Code?
typedef struct node {

struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

52CS	61c Lecture	4:	Memory	Management

Administrivia
• Last	call	for	instructional	accounts:	today	at	midnight

− Fill	out	the	Inst	Acct	Google	Form	on	Piazza

• Homework	0	due	this	Friday
• Mini-Bio	due	before	discussion	section

− You	may	choose	to	go	to	any	discussion	section	but	remember	
that	sticking	with	1	TA	is	better	for	EPA

• Weekly	tutoring/Guerrilla	sessions	will	begin	next	week!

CS	61c 53

Break!

9/5/17 54Fall	2017 - Lecture	#3

CS	61c 55
http://valgrind.org

Lecture	4:	Memory	Management

Valgrind Example

CS	61c Lecture	4:	Memory	Management 56

Valgrind Output	(abbreviated)
$ gcc -o test -g -O0 test.c
$ valgrind --leak-check=yes ./test
==8724== Memcheck, a memory error detector
==8724==
==8724== Invalid write of size 4
==8724== at 0x100000F5C: f (test.c:5)
==8724== by 0x100000F83: main (test.c:9)
==8724==
==8724== HEAP SUMMARY:
==8724==
==8724== 40 bytes in 1 blocks are definitely lost …
==8724== at 0x100008EBB: malloc …
==8724== by 0x100000F53: f (test.c:4)
==8724== by 0x100000F83: main (test.c:9)
==8724==
==8724== LEAK SUMMARY:
==8724== definitely lost: 40 bytes in 1 blocks
==8724== indirectly lost: 0 bytes in 0 blocks

CS	61c Lecture	4:	Memory	Management 57

Classification	of	Bugs
Bohrbugs

• Executing	faulty	code	produces	error
− syntax	errors
− algorithmic	errors	(e.g.	sort)
− dereferencing	NULL

• “Easily”	reproducible
• Diagnose	with	standard	debugging	
tools,	e.g.	gdb

Heisenbugs

• Executing	faulty	code	may	not	result	in	
error

− uninitialized	variable
− writing	past	array	boundary

• Difficult	to	reproduce
• Hard	to	diagnose	with	standard	tools
• Defensive	programming	&	Valgrind
attempt	to	convert	Heisenbugs	to	
Bohrbugs

− crash	occurs	during	testing,	not	$&^#!

CS	61c Lecture	4:	Memory	Management 58
Ref:	J.	Gray,	Why	do	computers	stop	and	what	can	be	done	about	them?,	Tandem	TR	85.7	

Disclaimer:	classification	is	controversial.	Just	do	not	write	buggy	programs	…

Agenda
• Pointers	Wrap-up
• Strings	in	C
• C	Memory	Management
• Stack
• Heap
• Implementations	of	malloc/free
• Common	memory	problems	&	how	to	avoid/find	them
• And	in	Conclusion,	…
CS	61c Lecture	4:	Memory	Management 59

And	in	Conclusion	…
• C	has	three	main	memory	segments	to	allocate	data:

− Static	Data:	Variables	outside	functions	(globals)
− Stack:	Variables	local	to	function
− Heap:	Memory	allocated	explicitly	with	malloc/free

• Heap	data	is	an	exceptionally	fertile	ground	for	bugs
− memory	leaks &	corruption
− send	me	your	best	examples	(EPA	credit?	- you	paid	for	them!)

• Strategies:
− Planning:	

§ Who	“owns”	malloc’d data?	
§ Often	more	than	one	”owner”	

(pointer)	to	same	data
§ Who	can	safely	call	free?

− Defensive	programming,	e.g.
§ Assign	NULL to	free’d pointer
§ Use	const’s for	array	size

− Tools,	e.g.
§ gdb,	Valgrind

60CS	61c Lecture	4:	Memory	Management

Additional	Examples	of

C	Memory	Errors

(to	peruse	at	your	leisure)

CS	61c Lecture	4:	Memory	Management 61

Using	Memory	You	Don’t	Own
• What	is	wrong	with	this	code?

int *ipr, *ipw;

void ReadMem() {

int i, j;

ipr = (int *) malloc(4 * sizeof(int));

i = *(ipr - 1000); j = *(ipr + 1000);

free(ipr);

}

void WriteMem() {

ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0;

free(ipw);

}

62CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Don’t	Own
• Using	pointers	beyond	the	range	that	had	been	malloc’d

– May	look	obvious,	but	what	if	mem refs	had	been	result	of	pointer	arithmetic	that	erroneously	took	them	out	of	
the	allocated	range?

int *ipr, *ipw;

void ReadMem() {

int i, j;

ipr = (int *) malloc(4 * sizeof(int));

i = *(ipr - 1000); j = *(ipr + 1000);

free(ipr);

}

void WriteMem() {

ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0;

free(ipw);

} 63CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• What	is	wrong	with	this	code?
int *pi;
void foo() {
pi = malloc(8*sizeof(int));
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

64CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• Memory	leak:	more	mallocs than	frees
int *pi;
void foo() {
pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

65CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• What	is	wrong	with	this	code?

int *plk = NULL;
void genPLK() {
plk = malloc(2 * sizeof(int));
… … …
plk++;

}

66CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• Potential	memory	leak	– handle	(block	pointer)	has	been	
changed,	do	you	still	have	copy	of	it	that	can	correctly	be	
used	in	a	later	free?

int *plk = NULL;
void genPLK() {
plk = malloc(2 * sizeof(int));
… … …
plk++; /* Potential leak: pointer variable
incremented past beginning of block! */

}

67CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• What	is	wrong	with	this	code?
void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

68CS	61c Lecture	4:	Memory	Management

Faulty	Heap	Management
• Can’t	free	non-heap	memory;	Can’t	free	memory	that	hasn’t	been	
allocated

void FreeMemX() {
int fnh = 0;
free(&fnh); /* Oops! freeing stack memory */

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
/* fum+1 is not a proper handle; points to middle
of a block */
free(fum);
free(fum);
/* Oops! Attempt to free already freed memory */

}

69CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Haven’t	Allocated
• What	is	wrong	with	this	code?

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

70CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Haven’t	Allocated
• Reference	beyond	array	bounds

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
/* Write Beyond Array Bounds */
printf("%s\n", str);
/* Read Beyond Array Bounds */

}
71CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Don’t	Own

72

• What’s	wrong	with	this	code?

char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;
char result[128];

int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

result[i] = s1[j];

}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];
}

result[++i] = '\0';

return result;

}

CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Don’t	Own

73

• Beyond	stack	read/write

char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;
char result[128];

int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

result[i] = s1[j];

}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];
}

result[++i] = '\0';

return result;

}

Function	returns	pointer	to	stack	
memory	– won’t	be	valid	after	

function	returns

result is	a	local	array	name	–
stack	memory	allocated

CS	61c Lecture	4:	Memory	Management

Managing	the	Heap
• realloc(p,size):

– Resize	a	previously	allocated	block	at	p to	a	new	size
– If	p is	NULL,	then	realloc behaves	like	malloc
– If	size is	0,	then	realloc behaves	like	free,	deallocating the	block	from	the	heap
– Returns	new	address	of	the	memory	block;	NOTE:	it	is	likely	to	have	moved!
E.g.:	allocate	an	array	of	10	elements,	expand	to	20	elements	later

int *ip;
ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

74CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Don’t	Own
• What	is	wrong	with	this	code?

int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;

}

int* fill_fibonacci(int *fib, int size) {

int i;

init_array(fib, size);

/* fib[0] = 0; */ fib[1] = 1;

for (i=2; i<size; i++)

fib[i] = fib[i-1] + fib[i-2];

return fib;

}

75CS	61c Lecture	4:	Memory	Management

Using	Memory	You	Don’t	Own
• Improper	matched	usage	of	mem handles

int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;

}

int* fill_fibonacci(int *fib, int size) {

int i;

/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1] = 1;

for (i=2; i<size; i++)

fib[i] = fib[i-1] + fib[i-2];

return fib;

}

76

What	if	array	is	moved	to	
new	location?

Remember:	reallocmay	move	entire	block

CS	61c Lecture	4:	Memory	Management

Where	is	my	stuff?

CS	61c Lecture	4:	Memory	Management 77

Aside:	Memory	“Leaks”	in	Java
• Accidentally	keeping	a	reference	to	an	unused	object	
prevents	the	garbage	collector	to	reclaim	it
• May	eventually	lead	to	“Out	of	Memory”	error
• But	many	errors	are	eliminated:	

− Calling	free() with	invalid	argument	
− Accessing	free’d memory
− Accessing	outside	array	bounds
− Accessing	unallocated	memory	(forgot	calling	new)
(get	null-pointer	exception	– error,	but	at	least	no	“silent”	data	
corruption)

− All	this	can happen	in	a	C	program!

CS	61c Lecture	4:	Memory	Management 78

Using	the	Heap	...	Example
• New	problem:

− how	do	we	get	rid	of	the	
apple	trees?

• Need	a	way	to	free	no	
longer	used	memory
− or	may	eventually	run	out

CS	61c Lecture	4:	Memory	Management 79

