
CS	61C:	
Great	Ideas	in	Computer	Architecture	

More	RISC-V	Instructions	and
How	to	Implement	Functions

Instructors:
Krste	Asanović and	Randy	H.	Katz

http://inst.eecs.Berkeley.edu/~cs61c/fa17

9/14/17 Fall	2017	- Lecture	#6 1

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 2

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 3

Levels	of	
Representation/Interpretation

lw x10,	0(x12)
lw x11,	4(x12)
sw x11,	0(x12)
sw x10,	4(x12)

High-Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	RISC-V)

Machine		Language	
Program	(RISC-V)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

9/14/17 4

Review	From	Last	Lecture	…
• Computer	“words”	and	“vocabulary”	are	called	instructions and	

instruction	set	respectively
• RISC-V	is	example	RISC	instruction	set	used	in	CS61C

– Lecture/problems	use	32-bit	RV32	ISA,	book	uses	64-bit	RV64	ISA
• Rigid	format:	one	operation,	two	source	operands,	one	destination

– add,sub,mul,div,and,or,sll,srl,sra
– lw,sw,lb,sb to	move	data	to/from	registers	from/to	memory
– beq, bne, j for	decision/flow	control

• Simple	mappings	from	arithmetic	expressions,	array	access,	in	C	to	
RISC-V	instructions

9/14/17 5

Processor

Control

Datapath

Recap:	Registers	live	inside	the	Processor

6

PC

Registers
Arithmetic	&	Logic	Unit

(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

CS	61c

Example	if-else Statement
• Assuming	translations	below,	compile
f	→	x10 g	→	x11 h	→	x12
i →	x13 j	→	x14

if (i == j) bne x13,x14,Else
f = g + h; add x10,x11,x12

else j Exit
f = g – h; Else: sub x10,x11,x12

Exit:

9/14/17 7

Magnitude Compares in RISC-V
• Until	now,	we’ve	only	tested	equalities	(==	and	!=	in	C);		

General	programs	need	to	test	<	and	>	as	well.
• RISC-V	magnitude-compare	branches:

“Branch	on	Less	Than”
Syntax:								blt reg1,reg2, label
Meaning: if	(reg1	<	reg2)	//	treat	registers	as	signed	integers

goto label;
• “Branch	on	Less	Than	Unsigned”

Syntax:								bltu reg1,reg2, label
Meaning: if	(reg1	<	reg2)	 //	treat	registers	as	unsigned	integers

goto label;

9/14/17 8

C	Loop	Mapped	to	RISC-V	Assembly
int A[20];
int sum = 0;
for (int i=0; i<20; i++)

sum += A[i];

addi x9, x8, 0 # x9=&A[0]
addi x10, x0, 0 # sum=0
addi x11, x0, 0 # i=0

Loop:
lw x12, 0(x9) # x12=A[i]
add x10,x10,x12 # sum+=
addi x9,x9,4 # &A[i++]
addi x11,x11,1 # i++
addi x13,x0,20 # x13=20
blt x11,x13,Loop

9

Peer	Instruction
Which	of	the	following	is	TRUE?

RED:	add x10,x11,4(x12)is	valid	in	RV32
GREEN:	can	byte	address	8GB	of	memory	with	an	RV32	word
ORANGE:	immmust	be	multiple	of	4	for	lw x10,imm(x10)
to	be	valid

:	None	of	the	above

9/14/17 10

Peer	Instruction
Which	of	the	following	is	TRUE?

RED:	add x10,x11,4(x12)is	valid	in	RV32
GREEN:	can	byte	address	8GB	of	memory	with	an	RV32	word
ORANGE:	immmust	be	multiple	of	4	for	lw x10,imm(x10)
to	be	valid

:	None	of	the	above

9/14/17 11

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 12

Assembler	to	Machine	Code
(more	later	in	course)

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Assembler	converts	human-
readable	assembly	code	to	
instruction	bit	patterns

9/14/17 13

How	Program	is	Stored
Memory

Bytes

Program

Data

One	RISC-V	Instruction	=	32	bits

9/14/17 14

Processor

Control

Datapath

Program	Execution

PC

Registers
Arithmetic	&	Logic	Unit

(ALU)

Memory

BytesInstruction
Address

Read	
Instruction	
Bits

Program

Data

• PC (program	counter)	is	internal	register	inside	processor	holding	byte address	
of	next	instruction	to	be	executed

• Instruction	is	fetched	from	memory,	then	control	unit	executes	instruction	using	
datapath and	memory	system,	and	updates	program	counter	(default	is	add	+4	
bytes	to	PC,	to	move	to	next	sequential	instruction)

9/14/17 15

In	the	News:	Why	fast	computers	matter

CS	61c 16

European	Weather	supercomputer	ECMWF
50	tonnes
~120,000	compute	cores	(Intel	Broadwell)
10	PetaBytes of	storage
Runs	Linux	on	each	node

Break!

9/14/17 17

Helpful	RISC-V	Assembler	Features

• Symbolic	register	names
– E.g.,	a0-a7 for	argument	registers	(x10-x17)
– E.g.,	zero for	x0

• Pseudo-instructions
– Shorthand	syntax	for	common	assembly	idioms
– E.g.,	mv rd, rs = addi rd, rs, 0
– E.g.2,	li rd, 13 = addi rd, x0, 13

18

RISC-V	Symbolic	Register	Names

19

Numbers	
hardware	
understands

Human-friendly	
symbolic	names	
in	assembly	
code

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 20

Six	Fundamental	Steps	in	
Calling	a	Function

1. Put	parameters	in	a	place	where	function	can	access	
them

2. Transfer	control	to	function
3. Acquire	(local)	storage	resources	needed	for	function
4. Perform	desired	task	of	the	function
5. Put	result	value	in	a	place	where	calling	code	can	

access	it	and	restore	any	registers	you	used
6. Return	control	to	point	of	origin,	since	a	function	can	

be	called	from	several	points	in	a	program
9/14/17 21

RISC-V	Function	Call	Conventions
• Registers	faster	than	memory,	so	use	them
• a0–a7 (x10-x17):	eight	argument	registers	to	
pass	parameters	and	two	return	values	(a0-a1)

• ra:	one	return	address	register	to	return	to	the	point	
of	origin	(x1)

9/14/17 22

Instruction	Support	for	Functions	(1/4)
... sum(a,b);... /* a,b:s0,s1 */
}
int sum(int x, int y) {
return x+y;
}

address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C
R
IS
C
-V

In	RISC-V,	all	instructions	are	4	bytes,	and	
stored	in	memory	just	like	data.	So	here	we	
show	the	addresses	of	where	the	programs	
are	stored.

9/14/17 23

Instruction	Support	for	Functions	(2/4)
... sum(a,b);... /* a,b:s0,s1 */
}
int sum(int x, int y) {
return x+y;
}

address (shown in decimal)
1000 mv a0,s0 # x = a
1004 mv a1,s1 # y = b
1008 addi ra,zero,1016 #ra=1016
1012 j sum #jump to sum
1016 … # next instruction
…
2000 sum: add a0,a0,a1
2004 jr ra # new instr. “jump register”

9/14/17 24

C
R
IS
C
-V

Instruction	Support	for	Functions	(3/4)
... sum(a,b);... /* a,b:s0,s1 */
}
int sum(int x, int y) {
return x+y;
}

2000 sum: add a0,a0,a1
2004 jr ra # new instr. “jump register”

• Question:	Why	use jr here?	Why	not use	j?

• Answer:	summight	be	called	by	many	places,	so	we	can’t	
return	to	a	fixed	place.	The	calling	proc	to	summust	be	able	
to	say	“return	here”	somehow.

9/14/17 25

C
R
IS
C
-V

Instruction	Support	for	Functions	(4/4)
• Single	instruction	to	jump	and	save	return	address:	jump	and	link	

(jal)
• Before:

1008 addi ra,zero,1016 #ra=1016
1012 j sum #goto sum

• After:
1008 jal sum # ra=1012,goto sum

• Why	have	a	jal?
– Make	the	common	case	fast:	function	calls very	common
– Reduce	program	size		
– Don’t	have	to	know	where code	is in	memory	with	jal!

9/14/17 26

RISC-V	Function	Call	Instructions
• Invoke	function:	jump	and	link	instruction	(jal)

(really	should	be	laj “link	and	jump”)
– “link”	means	form	an	address	or	link	that	points	to	

calling	site	to	allow	function	to	return	to	proper	address
– Jumps	to	address	and	simultaneously	saves	the	address	of	the	following

instruction	in	register	ra
jal FunctionLabel

• Return	from	function:	jump	register	instruction	(jr)	
– Unconditional	jump	to	address	specified	in	register:		jr ra
– Assembler	shorthand:	ret = jr ra

9/14/17 27

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 28

Example
int Leaf

(int g, int h, int i, int j)
{

int f;
f = (g + h) – (i + j);
return f;

}
• Parameter	variables	g,	h,	i, and	j in	argument	registers	a0,	a1,	

a2,	and	a3,	and	f in	s0
• Assume	need	one	temporary	register	s1

9/14/17 29

Where	Are	Old	Register	Values	Saved
to	Restore	Them	After	Function	Call?
• Need	a	place	to	save	old	values	before	call	function,	restore	

them	when	return,	and	delete	
• Ideal	is	stack:	last-in-first-out	queue	

(e.g.,	stack	of	plates)
– Push:	placing	data	onto	stack
– Pop:	removing	data	from	stack

• Stack	in	memory,	so	need	register	to	point	to	it
• sp is	the	stack	pointer	in	RISC-V	(x2)
• Convention	is	grow	stack	down	from	high	to	low	addresses

– Push decrements	sp,	Pop increments	sp
9/14/17 30

RISC-V	Code	for	Leaf()
Leaf: addi sp,sp,-8 # adjust stack for 2 items

sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0,a0,a1 # f = g + h
add s1,a2,a3 # s1 = i + j
sub a0,s0,s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp,sp,8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

9/14/17 31

Stack	Before,	During,	After	Function
• Need	to	save	old	values	of	s0 and	s1

9/14/17 32

sp

Before	call

sp
Saved s1

During	call

Saved s0

sp

After	call

Saved s1
Saved s0

Administrivia
• HW1	is	out!	Get	started	early.
• C	and	Memory	Management	Guerrilla	Session	
is	tonight	7-9pm	in	293	Cory

• Small	group	tutoring	sessions	have	launched

9/14/17 33

New	RISC-V	book!
• “The	RISC-V	Reader”,	David	Patterson,	

Andrew	Waterman

• Available	at
• https://www.createspace.com/7439283

• Early	print	edition	$9.99
• Kindle	edition	to	follow	at	some	point

• Recommended,		not	required

34

Break!

9/14/17 35

What	If	a	Function	Calls	a	Function?	
Recursive	Function	Calls?

• Would	clobber	values	in	a0-a7 and	ra
• What	is	the	solution?

9/14/17 36

Nested	Procedures	(1/2)
int sumSquare(int x, int y) {
return mult(x,x)+ y;
}

• Something	called	sumSquare,	now	sumSquare is	calling	
mult

• So	there’s	a	value	in	ra that	sumSquare wants	to	jump	
back	to,	but	this	will	be	overwritten	by	the	call	to	mult

Need	to	save	sumSquare return	address	before	call	
to	mult

9/14/17 37

Nested	Procedures	(2/2)
• In	general,	may	need	to	save	some	other	info	in	
addition	to	ra.

• When	a	C	program	is	run,	there	are	three	important	
memory	areas	allocated:
– Static:	Variables	declared	once	per	program,	cease	to	exist	
only	after	execution	completes	- e.g.,	C	globals

– Heap:	Variables	declared	dynamically	via	malloc
– Stack:	Space	to	be	used	by	procedure	during	execution;	
this	is	where	we	can	save	register	values

389/14/17

Optimized	Function	Convention
To	reduce	expensive	loads	and	stores	from	spilling	and	
restoring	registers,	RISC-V	function-calling	convention	
divides	registers	into	two	categories:

1. Preserved	across	function	call
– Caller	can	rely	on	values	being	unchanged
– sp,	gp,	tp, “saved	registers”	s0- s11 (s0 is	also fp)

2. Not	preserved	across	function	call
– Caller	cannot	rely	on	values	being	unchanged
– Argument/return	registers	a0-a7,ra,	“temporary	

registers”	t0-t6
9/14/17 39

Peer	Instruction
• Which	statement	is	FALSE?
• RED:		RISC-V	uses	jal to	invoke	a	function	and
jr to	return	from	a	function	

• GREEN:	 jal saves	PC+1	in	ra
• ORANGE:	 The	callee can	use	temporary	registers	(ti)	

without	saving	and	restoring	them
:	 The	caller	can	rely	on	save	registers	(si)	

without	fear	of	callee changing	them

9/14/17 40

Peer	Instruction
• Which	statement	is	FALSE?
• RED:		RISC-V	uses	jal to	invoke	a	function	and
jr to	return	from	a	function	

• GREEN:	 jal saves	PC+1	in	ra
• ORANGE:	 The	callee can	use	temporary	registers	(ti)	

without	saving	and	restoring	them
:	 The	caller	can	rely	on	save	registers	(si)	

without	fear	of	callee changing	them

9/14/17 41

Allocating	Space	on	Stack
• C	has	two	storage	classes:	automatic	and	static

– Automatic variables	are	local	to	function	and	discarded	
when	function	exits

– Static	variables	exist	across	exits	from	and	entries	to	
procedures

• Use	stack	for	automatic	(local)	variables	that	don’t	fit	in	
registers

• Procedure	frame	or activation	record:	segment	of	stack	
with	saved	registers	and	local	variables

9/14/17 42

Stack	Before,	During,	After	Function

439/14/17

sp

Before	call

sp

During	call

Saved	argument	
registers	(if	any)

Saved	return	
address	(if	needed)

Saved	saved	
registers	(if	any)
Local	variables

(if	any)

sp

After	call

Using	the	Stack	(1/2)
• So	we	have	a	register	sp which	always	points	to	the	
last	used	space	in	the	stack

• To	use	stack,	we	decrement	this	pointer	by	the	
amount	of	space	we	need	and	then	fill	it	with	info

• So,	how	do	we	compile	this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

9/14/17 44

Using	the	Stack	(2/2)

45

sumSquare:
addi sp,sp,-8 # space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
mv a1,a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0,a0,a1 # mult()+y
lw ra, 4(sp) # get ret addr
addi sp,sp,8 # restore stack
jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

9/14/17

Where	is	the	Stack	in	Memory?
• RV32	convention	(RV64	and	RV128	have	different	memory	layouts)
• Stack	starts	in	high	memory	and	grows	down

– Hexadecimal	(base	16)	:	bfff_fff0hex
– Stack	must	be	aligned	on	16-byte	boundary	(not	true	in	examples	above)

• RV32	programs	(text	segment)	in	low	end
– 0001_0000hex

• static	data	segment	(constants	and	other	static	variables)	above	text	for	static	
variables
– RISC-V	convention	global	pointer	(gp)	points	to	static
– RV32	gp =	1000_0000hex

• Heap	above	static	for	data	structures	that	grow	and	shrink	;	grows	up	to	high	
addresses

9/14/17 46

RV32	Memory	Allocation

9/14/17 47

Outline
• RISC-V	ISA	and	C-to-RISC-V	Review
• Program	Execution	Overview
• Function	Call
• Function	Call	Example
• And	in	Conclusion	…

9/14/17 48

And	in	Conclusion	…
• Functions	called	with	jal,	return	with	jr ra.
• The	stack	is	your	friend:	Use	it	to	save	anything	you	need.		Just leave	it	the	way	you	

found	it!
• Instructions	we	know	so	far…

Arithmetic:	add, addi, sub
Memory: lw, sw, lb, lbu, sb
Decision:			beq, bne, blt, bge
Unconditional	Branches	(Jumps):		j, jal, jr

• Registers	we	know	so	far
– All	of	them!
– a0-a7	for	function	arguments,	a0-a1	for	return	values
– sp,	stack	pointer,	 ra return	address
– s0-s11	saved	registers
– t0-t6	temporaries
– zero

499/14/17

