
CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

Virtual	Memory	Overview	

Virtual	address	(VA):	What	your	program	uses	

Virtual	Page	Number	 Page	Offset	

Physical	address	(PA):	What	actually	determines	where	in	memory	to	go	

Physical	Page	Number	 Page	Offset	

e.g.	With	4	KiB	pages	and	byte	addresses,	2^(page	offset	bits)	=	4096,	so	page	offset	bits	=	12	

The	Big	Picture:	Logical	Flow	
Translate	VA	to	PA	using	the	TLB	and	Pa	
ge	Table.	Then	use	PA	to	access	memory	as	the	program	
intended.	

Pages	
A	chunk	of	memory	or	disk	with	a	set	size.	Addresses	in	
the	same	virtual	page	get	mapped	to	addresses	in	the	
same	physical	page.	The	page	table	determines	the	
mapping.	

The	Page	Table	

Index	=	Virtual	Page	
Number	
(not	stored)	

Page	
Valid	

Page	
Dirty	

Permission	Bits	
(read,	write,	...)	

Physical	Page	Number	

0	 	 	 	 	

1	 	 	 	 	

2	 	 	 	 	

…	 	 	 	 	

(Max	virtual	page	number)	 	 	 	 	

Each	stored	row	of	the	page	table	is	called	a	page	table	entry	(the	grayed	section	is	the	first	page	
table	entry).	The	page	table	is	stored	in	memory;	the	OS	sets	a	register	telling	the	hardware	the	
address	of	the	first	entry	of	the	page	table.	The	processor	updates	the	“page	dirty”	in	the	page	table:	
“page	dirty”	bits	are	used	by	the	OS	to	know	whether	updating	a	page	on	disk	is	necessary.	Each	
process	gets	its	own	page	table.	
• Protection	Fault--The	page	table	entry	for	a	virtual	page	has	permission	bits	that	prohibit	the	

requested	operation	
• Page	Fault--The	page	table	entry	for	a	virtual	page	has	its	valid	bit	set	to	false.	The	entry	is	not	

in	memory.	
	

The Translation Lookaside Buffer (TLB)	

CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

A	cache	for	the	page	table.	Each	block	is	a	single	page	table	entry.	If	an	entry	is	not	in	the	
TLB,	it’s	a	TLB	miss.	Assuming	fully	associative:		
TLB	Entry	
Valid	

Tag	=	Virtual	Page	
Number	

Page	Table	Entry	
Page	
Dirty	

Permission	Bits	 Physical	Page	Number	

…	 …	 …	 …	 …	

The	Big	Picture	Revisited	

	

Exercises	
1)	What	are	three	specific	benefits	of	using	virtual	memory?	
Bridges	memory	and	disk	in	memory	hierarchy.	
Simulates	full	address	space	for	each	process.	
Enforces	protection	between	processes.	
	
2)	What	should	happen	to	the	TLB	when	a	new	value	is	loaded	into	the	page	table	address	
register?	
The	valid	bits	of	the	TLB	should	all	be	set	to	0.	The	page	table	entries	in	the	TLB	corresponded	to	
the	old	page	table,	so	none	of	them	are	valid	once	the	page	table	address	register	points	to	a	
different	page	table.	
	
3)	Fill	in	the	following	formulas	below.		
#Offset	Bits	=	log2(page	size	in	bytes)	
#Virtual	Address	Bits	=	#(VPN	Bits)	+	#(Page	Offset	bits)		
#Physical	Address	Bits	=	#(PPN	Bits)	+	#(Page	Offset	bits)		
#Bits	per	row	of	PT	=	#(PPN	Bits)	+	#(Extra	bits	[valid,	dirty	bits,	etc.])	
	
	
	
	
4)	Fill	this	table	out!	

CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

Virtual	
Address	Bits	

Physical	
Address	Bits	

Page	Size	 VPN	Bits	 PPN	Bits	 Bits	per	row	of	PT	
(4	extra	bits)	

32	 32	 16KiB	 18	 18	 22	

32	 26	 8KiB	 19	 13	 17	

36	 32	 32KiB	 21	 17	 21	

40	 36	 32KiB	 25	 21	 25	

64	 40	 64KiB	 48	 24	 28	

5)	A	processor	has	16-bit	addresses,	256	byte	pages,	and	an	8-entry	fully	associative	TLB	with	

LRU	replacement	(the	LRU	field	is	3	bits	and	encodes	the	order	in	which	pages	were	accessed,	0	

being	the	most	recent).	At	some	time	instant,	the	TLB	for	the	current	process	is	the	initial	state	

given	in	the	table	below.	Assume	that	all	current	page	table	entries	are	in	the	initial	TLB.	

Assume	also	that	all	pages	can	be	read	from	and	written	to.	Fill	in	the	final	state	of	the	TLB	

according	to	the	access	pattern	below.	

Free	physical	pages:	0x17,	0x18,	0x19	
Access	pattern:	
Read	 0x11f0	

Write	 0x1301	

Write	 0x20ae	

Write	 0x2332	

Read	 0x20ff	

Write	 0x3415	

	

Initial	TLB	

VPN	 PPN	 Valid	 Dirty	 LRU	

0x01	 0x11	 1	 1	 0	

0x00	 0x00	 0	 0	 7	

0x10	 0x13	 1	 1	 1	

CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

0x20	 0x12	 1	 0	 5	

0x00	 0x00	 0	 0	 7	

0x11	 0x14	 1	 0	 4	

0xac	 0x15	 1	 1	 2	

0xff	 0x16	 1	 0	 3	

	

Read	0x11f0:	hit,	LRUs:	1,7,2,5,7,0,3,4	

Write	0x1301:	miss,	map	VPN	0x13	to	PPN	0x17,	valid	and	dirty,	LRUs:	2,0,3,6,7,1,4,5	

Write	0x20ae:	hit,	dirty,	LRUs:	3,1,4,0,7,2,5,6	

Write	0x2332:	miss,	map	VPN	0x23	to	PPN	0x18,	valid	and	dirty,	LRUs:	4,2,5,1,0,3,6,7	

Read	0x20ff:	hit,	LRUs:	4,2,5,0,1,3,6,7	

Write	0x3415:	miss	and	replace	last	entry,	map	VPN	0x34	to	0x19,	dirty,	LRUs,	5,3,6,1,2,4,7,0	

	

Final	TLB	

VPN	 PPN	 Valid	 Dirty	 LRU	

0x01	 0x11	 1	 1	 5	

0x13	 0x17	 1	 1	 3	

0x10	 0x13	 1	 1	 6	

0x20	 0x12	 1	 1	 1	

0x23	 0x18	 1	 1	 2	

0x11	 0x14	 1	 0	 4	

0xac	 0x15	 1	 1	 7	

0x34	 0x19	 1	 1	 0	

6) The specs for a MIPS machine’s memory system that has one level of cache and virtual memory are:

• 1MiB of Physical Address Space
• 4GiB of Virtual Address Space
• 4KiB page size
• 16KiB 8-way set-associative write-through cache, LRU replacement

CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

• 1KiB Cache Block Size
• 2-entry TLB, LRU replacement
The following code is run on the system, which has no other users and process switching turned off.
Assume that the page table can hold 11 amounts of pages. To make things "easier," pretend that the
compiled binary for the following program does not require a page to be implemented for
questions (a-g). malloc should return address 0x100000 (you should be "block-aligned" and "page-
aligned."

#define NUM_INTS 8192 // This many ints...

int *A = (int *)malloc(NUM_INTS * sizeof(int));

int i, total = 0;

for(i = 0; i < NUM_INTS; i += 128) A[i] = i;

for(i = 0; i < NUM_INTS; i += 128) total += A[i]; // SPECIAL

a) What is the T:I:O bit breakup for the cache (assuming byte addressing)? T:_9_I:_1_O:_10_

b) What is the VPN : PO bit breakup for VM (assuming byte addressing)? _20_:_12_

c) What is the PPN : PO bit breakup for PM (assuming byte addressing)? _8_:_12_

d) How many page faults can occur in the worst-case scenario before the "SPECIAL" for loop?

 Well, in the worst case scenario, the TLB is empty/flushed prior to the process and the page
table is empty. Ignoring any possibility that the compiled binary code takes up any page, we know
that our array takes up 8192 * 4 bytes = 215 bytes, which is equivalent to

23 *212 bytes, which is equal to 8 pages. Thus, we would have 8 page faults in the worst case.

For the following questions, only consider the line marked “SPECIAL”. However, the current state of
the process should be whatever is expected after the prior for loop. Your answer can be a fraction:

e) Calculate the hit percentage for the cache

 1/2 = 50%. Our cache is 214B 8-way set associative. We know that A is 8192 * 4 bytes = 215 bytes,
which is the equivalent to 2 cache sizes. We also know that we are block and page aligned. We read
from A[i] once. If we look at accesses in the first block, we can see that there is a single miss. We then

CS61C	Summer	2016	 Discussion	13	–	Virtual	Memory	
	

move to i = 128, which is 512 bytes away and proceed to hit. Of these two memory accesses, there is
one hit. This rate repeats for all blocks.

f) Calculate the hit percentage for the TLB

 7/8 = 87.5%. We know that one page is 212 Bytes. As seen in c), we are incrementing by 512 bytes,
which means that there are 212/29=23 page accesses per page. Of these accesses, we miss once to load
in the page from disk to memory and then proceed to hit the other 7 times.

g) Calculate the page hit percentage for the page table

 100% (look at the for loop before SPECIAL).

h) How would having the compiled binary for this program take up one page-sized amounts of data
affect our problems for the "SPECIAL" loop? What about for part d?

 We can potentially have one TLB page designated for code and the other for all memory accesses
of our array (our TLB has 2 entries). For part d, we'd have one extra page fault however because our
page table would not originally contain the page where our code is located.

i) What would happen to our TLB performance if malloc perhaps returned an address that was not
"page aligned" and instead was for instance, 0x0FFFFC? What about our page fault count for part
d?

 Malloc would not have returned a page-aligned address. Our array is 8 page sizes long. If it was
not page-aligned, we could potentially address it in such a way that it spanned 9 different pages in
virtual memory, and in turn required three different mappings to physical memory. This could reduce
our hit percentage for the TLB, and also increase our page fault count in part d.

	

