## EECS 16A Designing Information Devices and Systems I

## 1. Correlation




Assume that both signals are periodic with period 5, that is, each plot shows one full period of a periodic signal.
(a) Sketch the autocorrelation (correlation with itself) of Signal 1.
(b) Sketch the autocorrelation of Signal 2.
(c) Sketch the cross-correlation of Signal 1 with Signal 2. Suppose we know Signal 2 is a delayed (and attenuated) version of Signal 1. What does the cross-correlation tell us about the delay?

## 2. Least Squares: A Toy Example

Let's start off by solving a little example of least squares.
We're given the following system of equations:

$$
\left[\begin{array}{ll}
1 & 4  \tag{1}\\
3 & 8 \\
0 & 0
\end{array}\right] \vec{x}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

where $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(a) Why can we not solve for $\vec{x}$ exactly?
(b) Find $\overrightarrow{\hat{x}}$, the least-squares estimate of $\vec{x}$, using the formula we derived in lecture.
(c) Now, let's try to find $\overrightarrow{\hat{x}}$ in a different (geometric) way. How might you do it?

## 3. Polynomial Fitting

Least squares may seem rather boring at first glance - we're just using it to "solve" systems of linear equations, after all. But, at further glance, it actually comes in a variety of sizes and flavors! For instance, you can solve problems that have decidedly non-linear elements in them, using least squares. Let's see how.
Last discussion, we had seen how to "fit" data in the form of (input $=x$, output $=y$ ) to a line. This made sense because the input-output relationship was fundamentally linear (Ohm's law).

But what if this relationship was not linear? For instance, the equation of the orbit of a planet around the sun is an ellipse. The equation for the trajectory of a projectile is a parabola. In these sorts of scenarios, how does one fit observation data to the correct curve?

In particular, say we know that the output, $y$, is a quartic polynomial in $x$. This means that we know that $y$ and $x$ are related as follows:

$$
\begin{equation*}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \tag{2}
\end{equation*}
$$

We're also given the following observations:

| $x$ | $y$ |
| :---: | :---: |
| 0.0 | 24.0 |
| 0.5 | 6.61 |
| 1.0 | 0.0 |
| 1.5 | -0.95 |
| 2.0 | 0.07 |
| 2.5 | 0.73 |
| 3.0 | -0.12 |
| 3.5 | -0.83 |
| 4.0 | -0.04 |
| 4.5 | 6.42 |

(a) What are the unknowns in this question? What are we trying to solve for?
(b) Can you write an equation corresponding to the first observation $\left(x_{0}, y_{0}\right)$, in terms of $a_{0}, a_{1}, a_{2}, a_{3}$ and $a_{4}$ ? What does this equation look like? Is it linear?
(c) Now, write a system of equations in terms of $a_{0}, a_{1}, a_{2}, a_{3}$ and $a_{4}$ using all the observations.
(d) Finally, solve for $a_{0}, a_{1}, a_{2}, a_{3}$, and $a_{4}$ using IPython. You have now found the quartic polynomial that best fits the data!
(e) We will now do another example in the IPython notebook, and see how to do polynomial fitting quickly using IPython!

