EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 11B

1. Correlation

Assume that both signals are periodic with period 5, that is, each plot shows one full period of a periodic signal.

- (a) Sketch the autocorrelation (correlation with itself) of Signal 1.
- (b) Sketch the autocorrelation of Signal 2.
- (c) Sketch the cross-correlation of Signal 1 with Signal 2. Suppose we know Signal 2 is a delayed (and attenuated) version of Signal 1. What does the cross-correlation tell us about the delay?

2. Least Squares: A Toy Example

Let's start off by solving a little example of least squares.

We're given the following system of equations:

$$\begin{bmatrix} 1 & 4 \\ 3 & 8 \\ 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
(1)

where $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- (a) Why can we not solve for \vec{x} exactly?
- (b) Find \vec{x} , the *least-squares estimate* of \vec{x} , using the formula we derived in lecture.
- (c) Now, let's try to find \vec{x} in a different (geometric) way. How might you do it?

3. Polynomial Fitting

Least squares may seem rather boring at first glance – we're just using it to "solve" systems of linear equations, after all. But, at further glance, it actually comes in a variety of sizes and flavors! For instance, you can solve problems that have decidedly non-linear elements in them, using least squares. Let's see how.

Last discussion, we had seen how to "fit" data in the form of (input = x, out put = y) to a line. This made sense because the input-output relationship was fundamentally linear (Ohm's law).

But what if this relationship was not linear? For instance, the equation of the orbit of a planet around the sun is an ellipse. The equation for the trajectory of a projectile is a parabola. In these sorts of scenarios, how does one fit observation data to the correct curve?

In particular, say we *know* that the output, *y*, is a *quartic* polynomial in *x*. This means that we know that *y* and *x* are related as follows:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \tag{2}$$

We're also given the following observations:

x	v
0.0	24.0
0.5	6.61
1.0	0.0
1.5	-0.95
2.0	0.07
2.5	0.73
3.0	-0.12
3.5	-0.83
4.0	-0.04
4.5	6.42

- (a) What are the unknowns in this question? What are we trying to solve for?
- (b) Can you write an equation corresponding to the first observation (x_0, y_0) , in terms of a_0, a_1, a_2, a_3 and a_4 ? What does this equation look like? Is it linear?
- (c) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 and a_4 using all the observations.
- (d) Finally, solve for a_0 , a_1 , a_2 , a_3 , and a_4 using IPython. You have now found the quartic polynomial that best fits the data!
- (e) We will now do another example in the IPython notebook, and see how to do polynomial fitting quickly using IPython!