EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 12B

1. The Order of Gram-Schmidt

(a) If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the set of vectors

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\left[\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Perform Gram-Schmidt on these vectors first in the order v_{1}, v_{2}, v_{3} and then in the order v_{3}, v_{2}, v_{1}. Do you get the same answer?

2. Linear Least Squares with Orthogonal Columns

(a) Geometric Interpretation of Linear Least Squares

Consider a linear least squares problem of the form

$$
\min _{\vec{x}}\|\vec{b}-A \vec{x}\|^{2}=\min _{\vec{x}}\left\|\left[\begin{array}{l}
b_{1} \tag{2}\\
b_{2} \\
b_{3}
\end{array}\right]-\left[\begin{array}{cc}
\mid & \mid \\
A_{1} & A_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\|^{2}
$$

Let the solution be $\overrightarrow{\hat{x}}$.
Label the following elements in the diagram below.

$$
\begin{equation*}
\vec{b}, \quad A_{1}, A_{2}, \quad \operatorname{span}\left\{A_{1}, A_{2}\right\}, \quad \overrightarrow{\hat{e}}=\vec{b}-A \overrightarrow{\hat{x}}, \quad A \overrightarrow{\hat{x}}, \quad A_{1} \hat{x}_{1}, A_{2} \hat{x}_{2}, \tag{3}
\end{equation*}
$$

(b) We now consider the special case of linear least squares where the columns of A are orthogonal (illustrated in the figure below). Use the linear least squares formula $\overrightarrow{\hat{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$ to show that

$$
\begin{align*}
& \hat{x}_{1}=\text { factor by which } A_{1} \text { is scaled to produce the projection of } \vec{b} \text { onto } A_{1} \tag{4}\\
& \hat{x}_{2}=\text { factor by which } A_{2} \text { is scaled to produce the projection of } \vec{b} \text { onto } A_{2} \tag{5}
\end{align*}
$$

(c) Compute the linear least squares solution to

$$
\min _{\vec{x}}\left\|\left[\begin{array}{l}
1 \tag{6}\\
2 \\
3 \\
4 \\
5
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right\|^{2}
$$

(d) Decomposing Linear Least Squares

Solve each of the following linear least squares problems

$$
\min _{x}\left\|\left[\begin{array}{l}
1 \tag{7}\\
2 \\
1
\end{array}\right]-\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right] x\right\|^{2}, \quad \min _{x}\left\|\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] x\right\|^{2}, \quad \min _{x}\left\|\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] x\right\|^{2}
$$

Now solve the larger linear least squares problem

$$
\min _{\vec{x}}\left\|\left[\begin{array}{c}
1 \tag{8}\\
2 \\
1 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{ccc}
2 & 0 & 0 \\
-2 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right\|^{2}
$$

What do you notice when you compare the solutions?

