EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 14A

1. Mechanical Problems

(a) Compute the determinant of $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(b) Compute the determinant of $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$
(c) Compute the determinant of $\left[\begin{array}{cccc}-4 & 0 & 0 & 0 \\ 0 & 17 & 0 & 0 \\ 0 & 0 & -31 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

2. Row Operations and Determinants

In this question we explore the effect of row operations on the determinant of a matrix. Note that scaling a row by a will increase the determinant by a, and adding a multiple of one row to another will not change the determinant. Swapping two rows of a matrix and computing the determinant is equivalent to multiplying the determinant of the original matrix by -1 . The determinant of an identity matrix is 1 . Feel free to prove these properties to convince yourself that they hold for general square matrices.
(a) An upper triangular matrix is a matrix with zero below its diagonal. For example a 3×3 upper triangular matrix is :

$$
\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & b_{2} & b_{3} \\
0 & 0 & c_{3}
\end{array}\right]
$$

By considering row-operations and what they do to a determinant, argue that the determinant of a general $n \times n$ upper-triangular matrix is the product of its diagonal entries, if they are non-zero. For example, the determinant of the 3×3 matrix above is $a_{1} \times b_{2} \times c_{3}$ if $a_{1}, b_{2}, c_{3} \neq 0$.
(b) If the diagonal of an upper-triangular matrix has a zero entry, argue that its determinant is still the product of its diagonal entries.
3. Eigenvalues and Special Matrices - For Visualization The following parts don't require knowledge about how to find eigenvalues. Answer each part by reasoning about the matrix at hand.
(a) Does a rotation matrix in \mathbb{R}^{2} have any eigenvalue $\lambda \in \mathbb{R}$?
(b) Does a reflection matrix in \mathbb{R}^{2} have any eigenvalues $\lambda \in \mathbb{R}$?
(c) Does a projection matrix in \mathbb{R}^{2} have any eigenvalues $\lambda \in \mathbb{R}$?
(d) If a matrix M has an eigenvalue 0 , what does this say about its nullspace? What does this say about the solution(s) of the system of linear equations $M \vec{x}=\vec{b}$?

4. Gram-Schmidt Procedure and QR Factorization

(a) Compute the QR Factorization of the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

