EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 15A

1. Diagonalization

One of the most powerful ways to think about matrices is to think of them in diagonal form 1.

(a) Consider a matrix A, a matrix V whose columns are the eigenvectors of A, and a diagonal matrix Λ with the eigenvalues of A on the diagonal (in the same order as the eigenvectors in the columns of V). From these definitions, show that

$$AV = V\Lambda \tag{1}$$

(b) We now multiply both sides on the right by V^{-1} and get $A = V\Lambda V^{-1}$, the diagonal form of A. Consider the action of A on a coordinate vector \vec{x}_u in the standard basis. Interpret each step of the following calculation in terms of coordinate transformations and stretching by eigenvalues.

$$A\vec{x}_u = V\Lambda V^{-1}\vec{x}_u \tag{2}$$

¹Not all matrices can be put in this form but most can. The ones that can't be diagonalized can be put in similar form called Jordan form.

2. Spectral Mapping Theorem

One of the most powerful things about matrix diagonalization is that it gives us insight into polynomial functions of matrices.

- (a) Write A^N using the diagonalization of A and simplify as much as possible. What do you get?
- (b) How could you raise A to any power while only doing three matrix multiplications.
- (c) Can you suggest an easy way to compute any polynomial function of A?