EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 15A

1. Diagonalization

One of the most powerful ways to think about matrices is to think of them in diagonal form ${ }^{1}$
(a) Consider a matrix A, a matrix V whose columns are the eigenvectors of A, and a diagonal matrix Λ with the eigenvalues of A on the diagonal (in the same order as the eigenvectors in the columns of V). From these definitions, show that

$$
\begin{equation*}
A V=V \Lambda \tag{1}
\end{equation*}
$$

(b) We now multiply both sides on the right by V^{-1} and get $A=V \Lambda V^{-1}$, the diagonal form of A. Consider the action of A on a coordinate vector \vec{x}_{u} in the standard basis. Interpret each step of the following calculation in terms of coordinate transformations and stretching by eigenvalues.

$$
\begin{equation*}
A \vec{x}_{u}=V \Lambda V^{-1} \vec{x}_{u} \tag{2}
\end{equation*}
$$

[^0]
2. Spectral Mapping Theorem

One of the most powerful things about matrix diagonalization is that it gives us insight into polynomial functions of matrices.
(a) Write A^{N} using the diagonalization of A and simplify as much as possible. What do you get?
(b) How could you raise A to any power while only doing three matrix multiplications.
(c) Can you suggest an easy way to compute any polynomial function of A ?

[^0]: ${ }^{1}$ Not all matrices can be put in this form but most can. The ones that can't be diagonalized can be put in similar form called Jordan form.

