EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 6A

1. Circuits Drill

(a) Find the voltage V_R and current i_R in the following circuits.

(b) Use nodal analysis to manually set up a system of equations whose solution would provide V_1 and V_2 . You may leave your equations in terms of G_i , V_{S_i} , V_1 , V_2 and I_S where V_1 and V_2 are the unknowns. Then formulate this as a matrix equation.

(c) What happens to the output voltage V_R (and the current i_R) if we attach a load of $8 \text{ k}\Omega$ to the output as depicted in the following circuit:

- (d) What if the load is $\frac{8}{3}k\Omega$? What if the load is $80 k\Omega$? For each situation, what is the current through each branch and the power dissipated by each circuit element?
- (e) Say that we want to support loads in the range of $8k\Omega$ to $10k\Omega$. We would like to maintain 4V across these load. How can we approximately achieve this by setting R_1 and R_2 in the following circuit?

(f) How much power will each resistor draw in this case? Is this efficient?