EECS 16A Designing Information Devices and Systems I
 Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 6A

1. Circuits Drill

(a) Find the voltage V_{R} and current i_{R} in the following circuits.
$\underbrace{+}_{-}$
ii.

(b) Use nodal analysis to manually set up a system of equations whose solution would provide V_{1} and V_{2}. You may leave your equations in terms of $G_{i}, V_{S_{i}}, V_{1}, V_{2}$ and I_{S} where V_{1} and V_{2} are the unknowns. Then formulate this as a matrix equation.

(c) What happens to the output voltage V_{R} (and the current i_{R}) if we attach a load of $8 \mathrm{k} \Omega$ to the output as depicted in the following circuit:

(d) What if the load is $\frac{8}{3} \mathrm{k} \Omega$? What if the load is $80 \mathrm{k} \Omega$? For each situation, what is the current through each branch and the power dissipated by each circuit element?
(e) Say that we want to support loads in the range of $8 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. We would like to maintain 4 V across these load. How can we approximately achieve this by setting R_{1} and R_{2} in the following circuit?

(f) How much power will each resistor draw in this case? Is this efficient?

