EECS 16A Designing Information Devices and Systems I Fall 2016 Babak Ayazifar, Vladimir Stojanovic Discussion 8B

1. A Trans-Impedance Amplifier

Above is a picture of the equivalent circuit of an op-amp. Consider the following circuit with an ideal op amp in negative feedback:

- (a) Use the golden rules to calculate v_{out} as a function of I_s and R.
- (b) Use the golden rules to implement the same behavior as the above circuit (with a current source), but use instead a voltage source and resistor.

2. Op-Amp Golden Rules

On the left is the picture of the equivalent circuit of an op-amp for reference.

- (a) What are the currents flowing into the positive and negative terminals of the op amp? I.e., what are I^+ and I^- ? What are some of the advantages of your answer with respect to using an op amp in your circuit designs?
- (b) Suppose we add a resistor of value R_L between v_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_{in} ? What are the implications of this with respect to using op amps in circuit design?
- (c) Now consider the circuit on the right. Assuming this is an ideal op amp, what is v_{out} ?
- (d) Assume for the op-amp that $R_{in} \to \infty$ and $R_{out} \to 0$. Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, V and R_L . Does v_{out} depend on R_L ? What is v_{out} in the limit as $A \to \infty$?

3. Op-amps as Comparators

For each of the circuits shown below, plot V_{out} for V_{in} ranging from -10V to 10V for (a) and from 0V to 10V for (b). Let A = 100 for your plots.

