
EECS 16A Designing Information Devices and Systems I
Fall 2016 Babak Ayazifar, Vladimir Stojanovic Homework 13

This homework is due December 6, 2016, at 13:00.

1. Homework process and study group
Who else did you work with on this homework? List names and student ID’s. (In case of hw party, you can
also just describe the group.) How did you work on this homework?
Working in groups of 3-5 will earn credit for your participation grade.

2. Mechanical Problem
Compute the eigenvalues and eigenvectors of the following matrices.

(a)
[

3 0
0 5

]
(b)

[
22 6
6 13

]
(c)

[
1 2
2 4

]
(d)

[√
3

2 −1
2

1
2

√
3

2

]
(What special matrix is this?)

3. Mechanical Diagonalization
All calculations in this problem are intended to be done by hand, but you can use a computer to check your
work.

Diagonalize the matrix

A =

 1/2 1/2 −1/2
−1/2 3/2 1/2
−1 1 1

 (1)

given that A has eigenvalues 1, 2, and 0.

4. Spectral Mapping and the Fibonacci Sequence
One of the most useful things about diagonalization is it allows us to easily compute polynomial functions
of matrices. This in turn lets us do far more, including solving many linear recurrence relations. This
problem shows you how this can be done for the Fibonacci numbers, but you should notice that the same
exact technique can apply far more generally.

Suppose we have a matrix A that can be diagonalized as

A = PDP−1 =

 | |
~[p1 · · · ~pn

| |


λ1 · · · 0

...
...

0 · · · λn


 | |
~p1 · · · ~pn

| |

−1

(2)
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where D is a diagonal matrix with the eigenvalues λ1, . . . ,λn on the diagonal and P is a matrix whose
columns ~p1, . . . ,~pn are the eigenvectors of A.

(a) Write out AN in terms of P,P−1, and D and simplify it as much as you can. You should be able to
show that you can write AN as

AN = PDNP−1 =

 | |
~p1 · · · ~pn

| |


λ N

1 · · · 0
...

...
0 · · · λ N

n


 | |
~p1 · · · ~pn

| |

−1

(3)

What does this say about any polynomial function of A?
(b) This idea that for diagonalizable matrices you can raise a matrix to any power by simply raising it’s

eigenvalues to that power is part of the spectral mapping theorem. We will now illustrate the power
of this theorem to compute analytical expressions for numbers in the famous Fibonacci sequence.
Take a look at the Wikipedia article and find a cool fact about Fibonacci numbers to report!

(c) The Fibonacci sequence can be constructed according to the following relation. The Nth number in
the Fibonacci sequence, FN is computed by adding the previous two numbers in the sequence together

FN = FN−1 +FN−2 (4)

We select the first two numbers in the sequence to be F1 = 0 and F2 = 1 and then we can compute the
following numbers as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (5)

Notice that we can write the operation of computing the next Fibonacci numbers from the previous
two using matrix multiplication [

FN

FN−1

]
=

[
1 1
1 0

]
︸ ︷︷ ︸

A

[
FN−1
FN−2

]
(6)

Do you see why? Notice also that we could use powers of A to compute Fibonacci numbers starting
from the original two, 0 and 1. [

FN

FN−1

]
=

[
1 1
1 0

]N−2[1
0

]
(7)

Diagonalize A and use Equation (3) to show that

FN =
1√
5

(
1+
√

5
2

)N−1

− 1√
5

(
1−
√

5
2

)N−1

(8)

is an analytical expression for the Nth Fibonacci number.
Note that A has eigenvalues and eigenvectors{

λ1 =
1+
√

5
2

, λ2 =
1−
√

5
2

} {
~p1 =

[
1+
√

5
2
1

]
, ~p2 =

[
1−
√

5
2
1

]}
(9)

Feel free to use the 2×2 inverse formula[
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]
(10)
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(d) (Bonus In-Scope) Generalize what you found to a procedure that will give you, in principle, expres-
sions for many linear recurrence relations that are recursively defined as Sn+k = ∑

k−1
i=0 αiSn+i for some

coefficients ~α and initial conditions [Sk−1,Sk−2, . . . ,S0]
T =~s0.

Do this by setting up the appropriate matrix A and then invoking a computation of its eigenvalues and
eigenvectors. And then using the results. (Feel free to assume diagonalizability of the resulting matrix,
although there are some important cases when that does not hold.)

5. Image Compression

In this question, we explore how eigenvalues and eigenvectors can be used for image compression. We have
seen that a grayscale image can be represented as a data grid. Say a symmetric, square image is represented
by a symmetric matrix A, such that AT = A. We’ve been transforming the images to vectors in the past to
make it easier to process them as data, but here we will understand them as 2D data. Let λ1 · · ·λn be the
eigenvalues of A with corresponding eigenvectors ~v1 · · ·~vn. Then, the matrix can be represented as

A = λ1~v1~v1
T +λ2~v2~v2

T + · · ·+λn~vn~vn
T

However, the matrix A can also be approximated with the k largest eigenvalues and corresponding eigenvec-
tors. That is,

A≈ λ1~v1~v1
T +λ2~v2~v2

T + · · ·+λk~vk~vk
T

(a) Can you construct appropriate matrices U , V (using ~vi’s as rows and columns) and a matrix Λ with the
eigenvalues λi as components such that

A =UΛV

.

(b) Use the IPython notebook prob12.ipynb and the image file pattern.npy. Use the numpy.linalg
command eig to find the U and Λ matrices for the image. Mathematically, how many eigenvectors
are required to fully capture the information within the image?

(c) In the IPython notebook, find an approximation for the image using the 100 largest eigenvalues and
eigenvectors.

(d) Repeat part (c) with k = 50. By further experimenting with the code, what seems to be the lowest value
of k that retains most of the salient features of the given image?

6. Counting the paths of a Random Surfer

In class, we discussed the behavior of a random web-surfer who jumps from webpage to webpage. We would
like to know how many possible paths there are for a random surfer to get from a page to another page. To
do this, we represent the webpages as a graph. If page 1 has a link to page 2, we have a directed edge from
page 1 to page 2. This graph can further be represented by what is known as an “adjacency matrix”, A, with
elements ai j. a ji = 1 if there is link from page i to page j. Matrix operations on the adjacency matrix make
it very easy to compute the number of paths to get from a particular webpage i to webpage j.

This path counting aspect actually is an implicit part of the how the “importance scores” for each webpage
are described. Recall that the “importance score” of a website is the steady-state frequency of the fraction
of people on that website.

Consider the following graphs.
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2	
  1	
  
Graph A

1	
   2	
  

3	
  4	
  
Graph B

1	
   4	
  

3	
  2	
  

5	
  

Graph C

(a) Write out the adjacency matrix for graph A.

(b) For graph A: How many one-hop paths are there from webpage-1 to webpage-2? How many two-hop
paths are there from webpage-1 to webpage-2? How about 3-hop?

(c) For graph A: What are the importance scores of the two webpages?

(d) Write out the adjacency matrix for graph B.

(e) For graph B: How many two-hop paths are there from webpage-1 to webpage-3? How many three-hop
paths are there from webpage-1 to webpage-2?

(f) For graph B: What are the importance scores of the webpages?

(g) Write out the adjacency matrix for graph C.

(h) For graph C: How many paths are there from webpage-1 to webpage-3?

(i) For graph C: What are the importance scores of the webpages? How is graph (c) different from graph
(b), and how does this relate the importance scores and eigenvalues and eigenvectors you found?

7. Sports Rank

Every year in College sports, specifically football and basketball, debate rages over team rankings. The
rankings determine who will get to compete for the ultimate prize, the national championship. However,
ranking teams is quite challenging in the setting of college sports for a few reasons: there is uneven paired
competition (not every team plays each other), sparsity of matches (every team plays a small subset of all
the teams available), and there is no well-ordering (team A beats team B who beats team C who beats A).
In this problem we will come up with an algorithm to rank the teams, with real data drawn from the 2014
Associated Press (AP) top 25 College football teams.
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Given N teams we want to determine the rating ri for the ith team for i = 1,2, . . . ,N, after which the teams
can be ranked in order from highest to lowest rating. Given the wins and losses of each team we can assign
each team a score si.

si =
N

∑
j

qi jr j, (11)

where qi j represents the number of times team i has beaten team j divided by the number 1 of games played

by team i. If we define the vectors~s =


s1
s2
...

sN

, and~r =


r1
r2
...

rN

 we can express their relationship as a system of

equations

~s = Q~r, (12)

where Q =


q11 q12 . . . q1N

q21 q22 . . . q2N
...

...
. . .

...
qN1 qN2 . . . qNN

 is an N×N matrix.

(a) Consider a specific case where we have three teams, team A, team B, and team C. Team A beats team
C twice and team B once. Team B beats team A twice and never beats team C. Team C beats team B
three times. What is the matrix Q?

(b) Returning to the general setting, if our scoring metric is good, then it should be the case that teams
with better ratings have higher scores. Let’s make the assumption that si = λ ri with λ > 0. Show that
~r is an eigenvector of Q.
To find our rating vector we need to find an eigenvector of Q with all nonnegative entries (ratings can’t
be negative) and a positive eigenvalue. If the matrix Q satisfies certain conditions (beyond the scope
of this course) the dominant eigenvalue λD, i.e. the largest eigenvalue in absolute value, is positive
and real. In addition, the dominant eigenvector, i.e. the eigenvector associated with the dominant
eigenvalue, is unique and has all positive entries. We will now develop a method for finding the
dominant eigenvector for a matrix when it is unique.

(c) Given~v is an eigenvector of Q with eigenvalue λ and a real nonzero number c, express Qnc~v in terms
of~v, c,n, and λ

(d) Now given multiple eigenvectors~v1,~v2, . . . ,~vm of Q, their eigenvalues λ1,λ2, . . . ,λm, and real nonzero
numbers c1,c2, . . . ,cm, express Qn(∑m

i=1 ci~vi) in terms of~v’s, λ ’s, and c’s.

(e) Assuming that |λ1|> |λi| for i = 2, . . . ,m, argue or prove

lim
n→∞

1
λ n

1
Qn(

m

∑
i=1

ci~vi) = c1~v1 (13)

Hints:
1We normalize by the number of games played to prevent teams from getting a high score by just repeatedly playing against

weak opponents
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i. For sequences of vectors {~an} and {~bn}, limn→∞(~an +~bn) = limn→∞~an + limn→∞
~bn.

ii. For a scalar w with |w|< 1, limn→∞ wn = 0.

(f) Now further assuming that λ1 is positive show

lim
n→∞

Qn(∑m
i=1 ci~vi)

||Qn(∑m
i=1 ci~vi)||

=
c1~v1

||c1~v1||
(14)

Hints:

i. Divide the numerator and denominator by λ n
1 and use the result from the previous part.

ii. For the sequence of vectors {~an}, limn→∞ ||~an||= || limn→∞~an||.
iii. For a sequence of vectors {~an} and a sequence of scalars {αn}, if limn→∞ αn is not equal to zero

then the limn→∞
~an
αn

= limn→∞~an
limn→∞ αn

.

Let’s assume that any vector~b in RN can be expressed as a linear combination of the eigenvectors of
any square matrix A in RN×N , i.e. A has N rows and N columns.
Let’s tie it all together. Given the eigenvectors of Q,~v1,~v2, . . . ,~vN , we arbitrarily choose the dominant
eigenvector to be~v1 =~vD. If we can find a vector~b = ∑

m
i=1 ci~vi, such that c1 is nonzero, then 2

lim
n→∞

Qn~b

||Qn~b||
=

c1~vD

||c1~vD||
. (15)

This is the idea behind the power iteration method, which is a method for finding the unique domi-
nant eigenvector (up to scale) of a matrix whenever one exists. In the IPython notebook we will use
this method to rank our teams. Note: For this application we know the rating vector (which will be
the dominant eigenvector) has all positive entries, but c1 might be negative resulting in our method
returning a vector with all negative entries. If this happens, we simply multiply our result by -1.

(g) From the method you implemented in the Ipython notebook name the top five teams, the fourteenth
team, and the seventeenth team.

8. The Dynamics of Romeo and Juliet’s Love Affair

In this problem we study a discrete-time model of the dynamics of Romeo and Juliet’s love affair—adapted
from Steven H. Strogatz’s original paper, Love Affairs and Differential Equations, Mathematics Magazine,
61(1), p.35, 1988, which described a continuous-time model.

Let R[n] denote Romeo’s feelings about Juliet on day n, and let J[n] quantify Juliet’s feelings about Romeo
on day n. If R[n]> 0, it means that Romeo loves Juliet and inclines toward her, whereas if R[n]< 0, it means
that Romeo is resentful of her and inclines away from her. A similar interpretation holds for J[n], which
represents Juliet’s feelings about Romeo.

A larger |R[n]| represents a more intense feeling of love (if R[n]> 0) or resentment (if R[n]< 0). If R[n] = 0,
it means that Romeo has neutral feelings toward Juliet on day n. Similar interpretations hold for larger |J[n]|
and the case of J[n] = 0.

We model the dynamics of Romeo and Juliet’s relationship using the following coupled system of linear
evolutionary equations:

R[n+1] = aR[n]+bJ[n], n = 0,1,2, . . . (16)

2If we select a vector at random c1 will be nonzero almost certainly.
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and

J[n+1] = cR[n]+d J[n], n = 0,1,2, . . . , (17)

which we can rewrite as

~s[n+1] = A~s[n], (18)

where

~s[n] =
[

R[n]
J[n]

]
denotes the state vector, and

A =

[
a b
c d

]
the state-transition matrix, for our dynamic system model.

The parameters a and d capture the linear fashion in which Romeo and Juliet respond to their own feelings,
respectively, about the other person. It’s reasonable to assume that a,d > 0, to avoid scenarios of fluctuating
day-to-day mood swings. Within this positive range, if 0 < a < 1, then the effect of Romeo’s own feelings
about Juliet tend to fizzle away with time (in the absence of influence from Juliet to the contrary), whereas
if a > 1, Romeo’s feelings about Juliet intensify with time (in the absence of influence from Juliet to the
contrary). A similar interpretation holds if 0 < d < 1 and d > 1.

The parameters b and c capture the linear fashion in which the other person’s feelings influences R[n] and
J[n], respectively. These parameters may or may not be positive. If b > 0, it means that the more Juliet
shows affection for Romeo, the more he loves her and inclines toward her. If b < 0, it means that the more
Juliet shows affection for Romeo, the more resentful he feels and the more he inclines away from her. A
similar interpretation holds for the parameter c.

All in all, each of Romeo and Juliet has four romantic styles, which makes for a combined total of sixteen
possible dynamic scenarios. And the fate of their interactions depends on the romantic style each of them
exhibits, the initial state, and the values of values of the entries in the state-transition matrix A. In this
problem, we’ll explore a subset of the possibilities.

(a) Consider the case where a+b = c+d in the state-transition matrix

A =

[
a b
c d

]
.

i. Show that

~v1 =

[
1
1

]
is an eigenvector of A, and determine its corresponding eigenvalue λ1. Determine, also, the other
eigenpair (λ2,~v2). Your expressions for λ1, λ2, and ~v2 must be in terms of one or more of the
parameters a, b, c, and d.

ii. Consider the following state-transition matrix:

A =

[
0.75 0.25
0.25 0.75

]
.

i. Determine the eigenpairs for this system.
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ii. Determine all the fixed points of the system. That is, find the set of points such that if Romeo
and Juliet start at, or enter, any of those points, they’ll stay in place forever: {~s∗|A~s∗ =~s∗}.
Show these points on a diagram where the x- and y- axes are R[n] and J[n].

iii. Determine representative points along the state trajectory ~s[n], n = 0,1,2, . . ., if Romeo and
Juliet start from the initial state

~s[0] =
[

1
−1]

]
.

iv. Suppose the initial state is ~s[0] = [3 5]T. Determine a reasonably simple expression for the
state vector~s[n]. Find the limiting state vector

lim
n→∞

~s[n].

(b) Consider the setup in which

A =

[
a b
c d

]
=

[
0 1
−1 0

]
.

In this scenario, if Juliet shows affection toward Romeo, Romeo’s love for her increases, and he in-
clines toward her. The more intensely Romeo inclines toward her, the more Juliet distances herself.
The more Juliet withdraws, the more Romeo is discouraged and retreats into his cave. But the more
Romeo inclines away, the more Juliet finds him attractive and the more intensely she conveys her af-
fection toward him. Juliet’s increasing warmth increases Romeo’s interest in her, which prompts him
to incline toward her—again!
Predict the outcome of this scenario before you write down a single equation.
Then determine a complete solution ~s[n] in the simplest of terms, assuming an initial state given by
~s[0] = [1 0]T. As part of this, you must determine the eigenvalues and eigenvectors of the A.
Plot (by hand, or otherwise without the assistance of any scientific computing software package),
on a two-dimensional plane (called a phase plane)—where the horizontal axis denotes R[n] and the
vertical axis denotes J[n]—representative points along the trajectory of the state vector ~s[n], starting
from the initial state given in this part. Describe, in plain words, what Romeo and Juliet are doing
in this scenario. In other words, what does their state trajectory look like? Determine ‖~s[n]‖2 for all
n = 0,1,2, . . . to corroborate your description of the state trajectory.
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