EECS 16ADesigning Information Devices and Systems IFall 2016Official Lecture NotesNote 17

Gram Schmidt Process

Before we begin, let's remind ourselves that the following subspaces are equivalent for any pairs of linearly independent vectors \vec{v}_1, \vec{v}_2 :

- span(\vec{v}_1, \vec{v}_2)
- span($\vec{v}_1, \alpha \vec{v}_2$)
- $span(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$
- $span(\vec{v}_1, \vec{v}_1 \vec{v}_2)$
- span($\vec{v}_1, \vec{v}_2 \alpha \vec{v}_1$)

Now what should α be if we would like \vec{v}_1 and $\vec{v}_2 - \alpha \vec{v}_1$ to be orthogonal to each other? Intuitively, $\alpha \vec{v}_1$ should be the projection of \vec{v}_2 onto \vec{v}_1 . Let's solve this algebraically using the definition of orthogonality:

 \vec{v}_1 and $\vec{v}_2 - \alpha \vec{v}_1$ are orthogonal (1)

$$\Leftrightarrow \vec{v}_1^T \left(\vec{v}_2 - \alpha \vec{v}_1 \right) = 0 \tag{2}$$

$$\Leftrightarrow \vec{v}_1^T \vec{v}_2 - \alpha \|\vec{v}_1\|^2 = 0 \tag{3}$$

$$\Leftrightarrow \alpha = \frac{\vec{v}_1^T \vec{v}_2}{\|\vec{v}_1\|^2} \tag{4}$$

Definition 17.1 (Orthonormal): A set of vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$ is orthonormal if all the vectors are mutually orthogonal to each other and all are of unit length.

Gram Schmidt is an algorithm that takes a set of linearly independent vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ and generates an orthonormal set of vectors $\{w_1, \ldots, w_n\}$ that span the same vector space as the original set. Concretely, $\{w_1, \ldots, w_n\}$ needs to satisfy the following:

- $\operatorname{span}(\{v_1, \dots, v_n\}) = \operatorname{span}(\{w_1, \dots, w_n\})$
- $\{w_1, \ldots, w_n\}$ is an orthonormal set of vectors

Now let's see how we can do this with a set of three vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ that is linearly independent of each other.

• Step 1: Find unit vector \vec{w}_1 such that span $(\{\vec{w}_1\}) = \text{span}(\{\vec{v}_1\})$.

Since span($\{\vec{v}_1\}$) is a one dimensional vector space, the unit vector that span the same vector space would just be the normalized vector point at the same direction as \vec{v}_1 . We have

$$\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}.$$
(5)

• Step 2: Given \vec{w}_1 from the previous step, find \vec{w}_2 such that $span(\{\vec{w}_1, \vec{w}_2\}) = span(\{\vec{v}_1, \vec{v}_2\})$ and orthogonal to \vec{w}_1 . We know that \vec{v}_2 – (the projection of \vec{v}_2 on \vec{w}_1) would be orthogonal to \vec{w}_1 as seen earlier. Hence, a vector \vec{e}_2 orthogonal to \vec{w}_1 where $span(\{\vec{w}_1, \vec{e}_2\}) = span(\{\vec{v}_1, \vec{v}_2\})$ is

$$\vec{e}_2 = \vec{v}_2 - \left(\vec{v}_2^T \vec{w}_1\right) \vec{w}_1.$$
(6)

Normalizing, we have $\vec{w}_2 = \frac{\vec{e}_2}{\|\vec{e}_2\|}$.

• Step 3: Now given \vec{w}_1 and \vec{w}_2 in the previous steps, we would like to find \vec{w}_3 such that $span(\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}) =$ $span(\{\vec{v}_1, \vec{v}_2, \vec{v}_3\})$. We know that the projection of \vec{v}_3 onto the subspace spanned by \vec{w}_1, \vec{w}_2 is

$$\left(\vec{v}_3^T \vec{w}_2\right) \vec{w}_2 + \left(\vec{v}_3^T \vec{w}_1\right) \vec{w}_1. \tag{7}$$

We know that

$$\vec{e}_3 = \vec{v}_3 - \left(\vec{v}_3^T \vec{w}_2\right) \vec{w}_2 - \left(\vec{v}_3^T \vec{w}_1\right) \vec{w}_1 \tag{8}$$

is orthogonal to \vec{w}_1 and \vec{w}_2 . Normalizing, we have $\vec{w}_3 = \frac{\vec{e}_3}{\|\vec{e}_3\|}$.

We can generalize the above procedure for any number of linearly independent vectors as follows:

1: Inputs:

• A set of linearly independent vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$.

2: Outputs:

- An orthonormal set of vectors $\{\vec{w}_1, \dots, \vec{w}_n\}$ where span $(\{\vec{v}_1, \dots, \vec{v}_n\}) =$ $\operatorname{span}(\{\vec{w}_1,\ldots,\vec{w}_n\}).$
- 3: **procedure** GRAM SCHMIDT($\vec{v}_1, \ldots, \vec{v}_n$)
- $\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$ for i = 2...n do 4:
- 5:
- $\vec{e}_i \leftarrow \vec{v}_i \sum_{j=1}^{i-1} \left(\vec{v}_i^T \vec{e}_j \right) \vec{w}_j$ $\vec{w}_i \leftarrow \frac{\vec{e}_i}{\|\vec{e}_i\|}$ 6:

7:
$$\vec{w}_i \leftarrow$$

```
9: end procedure
```