EECS 16A Designing Information Devices and Systems I Fall 2016 Official Lecture Notes

Gram Schmidt Process

Before we begin, let's remind ourselves that the following subspaces are equivalent for any pairs of linearly independent vectors \vec{v}_{1}, \vec{v}_{2} :

- $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$
- $\operatorname{span}\left(\vec{v}_{1}, \alpha \vec{v}_{2}\right)$
- $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{1}+\vec{v}_{2}\right)$
- $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{1}-\vec{v}_{2}\right)$
- $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}-\alpha \vec{v}_{1}\right)$

Now what should α be if we would like \vec{v}_{1} and $\vec{v}_{2}-\alpha \vec{v}_{1}$ to be orthogonal to each other? Intuitively, $\alpha \vec{v}_{1}$ should be the projection of \vec{v}_{2} onto \vec{v}_{1}. Let's solve this algebraically using the definition of orthogonality:

$$
\begin{align*}
& \vec{v}_{1} \text { and } \vec{v}_{2}-\alpha \vec{v}_{1} \text { are orthogonal } \tag{1}\\
\Leftrightarrow & \vec{v}_{1}^{T}\left(\vec{v}_{2}-\alpha \vec{v}_{1}\right)=0 \tag{2}\\
\Leftrightarrow & \vec{v}_{1}^{T} \vec{v}_{2}-\alpha\left\|\vec{v}_{1}\right\|^{2}=0 \tag{3}\\
\Leftrightarrow & \alpha=\frac{\vec{v}_{1}^{T} \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \tag{4}
\end{align*}
$$

Definition 17.1 (Orthonormal): A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is orthonormal if all the vectors are mutually orthogonal to each other and all are of unit length.

Gram Schmidt is an algorithm that takes a set of linearly independent vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and generates an orthonormal set of vectors $\left\{w_{1}, \ldots, w_{n}\right\}$ that span the same vector space as the original set. Concretely, $\left\{w_{1}, \ldots, w_{n}\right\}$ needs to satisfy the following:

- $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right)$
- $\left\{w_{1}, \ldots, w_{n}\right\}$ is an orthonormal set of vectors

Now let's see how we can do this with a set of three vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ that is linearly independent of each other.

- Step 1: Find unit vector \vec{w}_{1} such that $\operatorname{span}\left(\left\{\vec{w}_{1}\right\}\right)=\operatorname{span}\left(\left\{\vec{v}_{1}\right\}\right)$.

Since $\operatorname{span}\left(\left\{\vec{v}_{1}\right\}\right)$ is a one dimensional vector space, the unit vector that span the same vector space would just be the normalized vector point at the same direction as \vec{v}_{1}. We have

$$
\begin{equation*}
\vec{w}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|} . \tag{5}
\end{equation*}
$$

- Step 2: Given \vec{w}_{1} from the previous step, find \vec{w}_{2} such that $\operatorname{span}\left(\left\{\vec{w}_{1}, \vec{w}_{2}\right\}\right)=\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$ and orthogonal to \vec{w}_{1}. We know that \vec{v}_{2} (the projection of \vec{v}_{2} on \vec{w}_{1}) would be orthogonal to \vec{w}_{1} as seen earlier. Hence, a vector \vec{e}_{2} orthogonal to \vec{w}_{1} where $\operatorname{span}\left(\left\{\vec{w}_{1}, \vec{e}_{2}\right\}\right)=\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$ is

$$
\begin{equation*}
\vec{e}_{2}=\vec{v}_{2}-\left(\vec{v}_{2}^{T} \vec{w}_{1}\right) \vec{w}_{1} . \tag{6}
\end{equation*}
$$

Normalizing, we have $\vec{w}_{2}=\frac{\vec{e}_{2}}{\left\|\vec{e}_{2}\right\|}$.

- Step 3: Now given \vec{w}_{1} and \vec{w}_{2} in the previous steps, we would like to find \vec{w}_{3} such that $\operatorname{span}\left(\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}\right)=$ $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right)$. We know that the projection of \vec{v}_{3} onto the subspace spanned by \vec{w}_{1}, \vec{w}_{2} is

$$
\begin{equation*}
\left(\vec{v}_{3}^{T} \vec{w}_{2}\right) \vec{w}_{2}+\left(\vec{v}_{3}^{T} \vec{w}_{1}\right) \vec{w}_{1} . \tag{7}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\vec{e}_{3}=\vec{v}_{3}-\left(\vec{v}_{3}^{T} \vec{w}_{2}\right) \vec{w}_{2}-\left(\vec{v}_{3}^{T} \vec{w}_{1}\right) \vec{w}_{1} \tag{8}
\end{equation*}
$$

is orthogonal to \vec{w}_{1} and \vec{w}_{2}. Normalizing, we have $\vec{w}_{3}=\frac{\vec{e}_{3}}{\left\|\vec{e}_{\overrightarrow{3}}\right\|}$.
We can generalize the above procedure for any number of linearly independent vectors as follows:
Inputs:

- A set of linearly independent vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.

Outputs:

- An orthonormal set of vectors $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ where $\operatorname{span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)=$ $\operatorname{span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$.
procedure Gram $\operatorname{Schmidt}\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$
$\vec{w}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}$
for $i=2 \ldots n$ do
$\vec{e}_{i} \leftarrow \vec{v}_{i}-\sum_{j=1}^{i-1}\left(\vec{v}_{i}^{T} \vec{e}_{j}\right) \vec{w}_{j}$
$\vec{w}_{i} \leftarrow \frac{\vec{e}_{i}}{\left\|\vec{e}_{i}\right\|}$
end for
end procedure

