
EECS 16A Designing Information Devices and Systems I
Fall 2016 Official Lecture Notes Note 2

Introduction to Vectors

In the last note, we talked about systems of linear equations and tomography. Now, we are going to talk
about a very useful way of conceptualizing things.

What is a vector? Vectors can be used to help solve a system of equations on your math homework, but they
are also used to represent a multitude of things. For example, in the tomography example, the first column
of the matrix describing light absorption is a vector that represents the light absorbed by each bottle in that
stack. To begin talking about vectors, let’s actually first define what a scalar is.

Definition 2.1 (Scalar): A scalar is a number. In mathematics and physics, they can be used to describe
magnitude or used to scale things (e.g. halve every element of a vector. Another example is flipping all the
signs which we will interpret as multiplying by −1.).

Remark. Often, vectors are represented as letters in boldface (x), or with a small arrow on top (~x). In these
lecture notes we will use the latter arrow notation, and the size of the vector will be given (for example,
~x ∈ R3).

Suppose we are given a collection of n real numbers, x1,x2, · · · ,xn. We can represent this collection as a
single point in an n-dimensional space, denoted:

~x =


x1
x2
...

xn

 (1)

Example 2.1 (3-D Vector): For n = 3, we could have x1 =−1,x2 = 3.5,x3 = 0, and~x =

−1
3.5
0

. This vector

represents a point in 3-D space.

Definition 2.2 (Vector): ~x ∈ Rn, where ~x =


x1
x2
...

xn

, is called a vector. In this case, we say it is a vector in

Rn. Each xi (for i between 1 and n) is called a component, or element, of the vector. The size of a vector
is the number of components it contains. Two vectors ~x and ~y are said to be equal, ~x =~y, if they have the
same size, and xi = yi for all i.

Example 2.2 (Different kinds of vectors): Vectors can be much more general than the popular~x ∈Rn. For
example,
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(a) ~x ∈ Cn: Here, xi is a complex number.

(b) ~x ∈ Rm×n: Here, ~x is an m×n array with real entries, we can also think of it as an array with the rows
stacked on top of each other.

~x =

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⇒
x11

...
xmn

 (2)

(c) Functions are also vectors! For example, x could be a function over the integers. We usually write x(t)
as “x as a function of t”, where t ∈ Z and x(0),x(1), etc. are components of the vector:

~x =



...
x(−1)
x(0)
x(1)

...

 (3)

Note that if the function is over all integers, the vector representing it has an infinite number of compo-
nents! We call such vectors infinite-dimensional, and they will be come in handy when we learn signal
processing. But for the most part, in this course when we say “vector” we will mean a finite-dimensional
vector.

One way to use vectors is to represent the state of something.

Definition 2.3 (State): The minimum information you need to completely characterize a system at a given
point in time, without any need for more information about the past of the system.

State is a really powerful concept because it lets us separate the past from the future. The state completely
captures the present — and the past can only affect the future through the present.

Example 2.3 (Quadrotor): The 3D position, angle, velocity, and angular velocity of a quadrotor (Figure
1) at a particular time can be represented as - you guessed it - a vector ~X ∈ R12.

Example 2.4 (Color): This is relevant to the lab we will do! The vector

~x =

x1
x2
x3

 , ~x ∈ R3 (4)

can represent a color, with its components giving the red, green, and blue (RGB) intensity values. Typically
~x will fall in a range that reflects the range of the color (0 - 255).

However, the reality of color is quite subtle and involves psychophysics as well as ideas that are related to
ideas of sampling that we will talk about in 16B.

Example 2.5 (Position): ~x ∈ Rn can represent the sample values of a quantity at n time points. Imagine a
car moving along a line. The positions at time t1, t2, · · · , tn can be represented in a vector:

~x =


xt1
xt2
...

xtn

 (5)
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~X =



x
y
z

roll
pitch
yaw

ẋ
ẏ
ż
˙roll
˙pitch
˙yaw



Figure 1: A quadrotor and the vector containing the information needed to determine its state. The dot above
the components represents the derivative with respect to time.

Here, xti represents the position at time ti.

Example 2.6 (Image): A black and white image of m× n pixels can be represented by a vector of length
mn, with the components giving greyscale levels at the pixel location.


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

⇒



x11
...

x1n

x21
...

x2n
...
...

xm1
...

xmn



What about a color image? The image could be
stored in a vector in R3mn, because each of the mn
pixels has values for red, green, and blue.

What about a color video? This could be stored in a
vector in R3mn(number of frames in the video).

Special Vectors

Definition 2.4 (Zero Vector): A zero vector is a vector with all the components equal to zero, usually just
represented as~0. You can usually tell the size of the zero vector~0 from the context: if~x ∈ Rn is added to~0,
then~0 must also be in Rn.

Definition 2.5 (Standard Unit Vector): A standard unit vector is a vector with all components equal to
0 except for one element, which is equal to 1. A standard unit vector where the ith position is equal to 1 is
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written as ~ei. We can denote the 3 standard unit vectors in R3 as:

~e1 =

1
0
0

 ,~e2 =

0
1
0

 ,~e3 =

0
0
1

 (6)

When talking about standard unit vectors in the context of states, we might also use the word “pure” to refer
to such states. This is because they only have one kind of thing in them. Other states are mixtures of pure
states.

Vector Addition

Two vectors of the same size and in the same space (e.g. complex numbers, real numbers, etc.) can be added
together by adding their corresponding components, for example:−1

3.5
0

+
 2
−1
3

=

−1+2
3.5−1
0+3

=

 1
2.5
3

 (7)

In Rn, you place the first vector’s tail at the origin, and attach the second vector’s tail to the first vector’s
head. The origin to the second vector’s head is the resulting vector.

Properties of Vector Addition: for~x,~y,~z ∈ Rn

commutative ~x+~y =~y+~x
associative (~x+~y)+~z =~x+(~y+~z)
zero ~x+~0 =~x
additive inverse ~x+(−~x) =~0

Scalar Multiplication

We can multiply a vector by a number, called a scalar, that is in the same space as the vector (e.g. also in
the reals or in the complex numbers). Just multiply each of the components of the vector by the scalar:

(−3)

−1
3.5
0

=

 3
−10.5

0


In general, this looks like
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α


x1
x2
...

xn

=


αx1
αx2

...
αxn



Example 2.7 (Negative Vector): −~x, where~x ∈ Rn, is just −1×~x where -1 is a scalar.

Example 2.8 (Zero Vector): 0~x =~0

Properties of Scalar Multiplication

associative (αβ )~x = α(β~x)
distributive (α +β )~x = α~x+β~x
identity 1~x =~x

(8)

Vector Transpose

The transpose of a vector is crucial for vector and matrix calculations. We write the transpose of vector~x as

~xT . If~x =

x1
...

xn

, then~xT =
[
x1 · · · xn

]
. This is sometimes used so that writing down long column vectors

doesn’t take up vertical space.

The transpose of a column vector is a row vector. The transpose of a row vector is a column vector.
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