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Dimensionality

Consider a vector ~x in R2 what makes it different from say a vector in R5? For starters, vectors in R5 are
longer (contain more parameters) than vectors in R2. Let’s build on this. For any vector in R2 we would need
at least two parameters to uniquely describe any vector in that space, and for any vector in R5 we would
need exactly five parameters to uniquely define any vector. In this sense we can look at the dimension
of a space as the fewest amount of parameters needed to describe an element or member of that space.
The dimensionality can also be thought of as the degrees of freedom of your space, that is the number of
parameters that can be varied when describing a member of that space.

Range & Span

Let’s assume A is a matrix in Rn×m. Looking at this matrix as a linear operator that acts on vectors, then
we are taking in vectors that live in Rm (an m-dimensional space) and outputting vectors that live in Rn

(an n-dimensional space). We say that the range of an operator is the space of all outputs that the operator
can map to. What is the range of our matrix operator? To answer this we write our matrix in terms of its
columns,

A =

 | | |
~a1 ~a2 . . . ~am

| | |

 , (1)

where the vectors ~a’s live in Rn. The matrix A operates on any vector~x that live in Rm, where the operation
on~x is just A~x. As a member of Rm,~x can be written as

~x =


x1
x2
...

xm

 . (2)

From this we have

A~x =

 | | |
~a1 ~a2 . . . ~am

| | |




x1
x2
...

xm

 .= m

∑
k=1

xk~ak, (3)
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so we can conclude that the range of the operator A is the space of all possible linear combinations of its
columns, another name for this is the span of (the columns of) A, which we can write as

span(A) = {~v |~v =
m

∑
i=1

xi~ai,where xi’s are scalars} (4)

Dimension of the Span

What is the dimensionality of span(A)? A reasonable assumption would be to say n since after all the
vectors in our span live in Rn, and thus span(A) is certainly a subset of Rn (meaning it is contained in Rn) .
In general the matrix operator A will not be able to output every vector in Rn, so our span will not be equal
to Rn. The dimension cannot be greater than n, since span(A) is a subset of Rn, but it can certainly be less.
Say for example that A is made of all zeros, then its output would be zero-dimensional (it can only output
~0). In addition, we need to remember that the dimension of a space is determined by the minimum number
of parameters that we need to describe a vector in that space. So continuing with the same example if we are
dealing with a space that only contains one vector (in this case~0), no parameters are needed to be specified
to distinguish that vector from any other vectors in that space since there are none. Hence, the dimension of
of span(A) where A is a zero matrix is just zero.

We want to find the dimension of the span(A), and if we look at the definition in equation (??) we see that
we only get to choose m parameters, x1,x2, . . . ,xm, so the dimension cannot be greater than m. This is true
even if m is less than n. Now you might be asking how can that be the case when the vectors in the span(A)
each have n components? The answer is in defining our span we have constrained the kinds of vectors that
can live in our space, and because of this we may not need as many parameters as components to identify
the vectors in this space. As an example say I was born in Columbus, Ohio and I tell you that I was born in
the city of Columbus, if you are thinking in the space of the United States of America then you could reply
“Ohio or Georgia?", because for that space I have not given you enough information to identify my birth
place. I still need to give you the state parameter. However, if you are thinking just in the space of Ohio,
then saying I was born in the city of Columbus would be sufficient information, and this is because the space
has already constrained the state parameter, and thus it no longer needs to be specified. It does not change
the fact that I was born in Columbus, Ohio (i.e. the vector is the same) but depending on the space we are
thinking in I do not need as much information to convey this (i.e. how the vector is represented is different).

Given our discussion thus far, we might be tempted to say that the span is min(m,n), the minimum between
m and n, but this is not completely true. In some cases the columns of A are linearly dependent, which means
that some of the vectors are actually redundant. Any vector in the span(A) can always be represented as a
linear combination of the linearly independent columns of A. For example take

A =


2 0 2
3 2 5
5 1 6
2 2 4

 (5)

Now clearly the last column is not linearly independent as it can be obtained by adding the first two columns.
Let us take the following linear combination
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2


2
3
5
2

+3


0
2
1
2

+4


2
5
6
4

 (6)

You can verify that

2


2
3
5
2

+3


0
2
1
2

+4


2
5
6
4

=


12
32
37
26

= 6


2
3
5
2

+7


0
2
1
2

 . (7)

More generally you can verify

x1


2
3
5
2

+ x2


0
2
1
2

+ x3


2
5
6
4

= x̃1


2
3
5
2

+ x̃2


0
2
1
2

 , x̃1 = x1 + x3,and x̃2 = x2 + x3, (8)

Since the dimension is given by the fewest number of parameters that you need to identify any element in
the space, it turns out that the dimension of span(A) is equal to the number of linearly independent columns
of A, which will be less than or equal to the min(m,n).

dim(span(A))≤ min(m,n). (9)

Now let’s introduce the term rank. The rank of a matrix is the dimension of the span of its columns, i.e.,
rank(A) = dim(span(A)). For example, the rank of the matrix

A =


2 0 2
3 2 5
5 1 6
2 2 4

 (10)

defined previously is equal to 2 since it has two linearly independent columns.

Matrix Inversion

Now that we have been introduced to the concepts of linear independence, span, and dimension, we have all
the tools we need to tackle matrix inversion. First, let us define what it means for a matrix to be invertible
and what a matrix inverse it.

Definition 6.1 (Inverse): A square matrix A is said to be invertible if there exists an matrix B such that

AB = BA = I. (11)

where I is the identity matrix. In this case, we call the matrix B the inverse of the matrix A, which we denote
as A−1.
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Example 6.1 (Matrix inverse): Consider the 2×2 matrix A =

[
1 1
2 1

]
. Then A−1 =

[
−1 1
2 −1

]
. We can

verify that the following holds

AA−1 =

[
1 1
2 1

][
−1 1
2 −1

]
=

[
1 0
0 1

]
(12)

A−1A =

[
−1 1
2 −1

][
1 1
2 1

]
=

[
1 0
0 1

]
. (13)

Let’s show an important property of matrix inverses: If A is an invertible matrix, then its inverse must be
unique.

Proof. Suppose B1 and B2 are both inverses of the matrix A. Then we have

AB1 = B1A = I (14)

AB2 = B2A = I (15)

Now take the equation

AB1 = I. (16)

Multiplying both sides of the equation by B2 from the left, we have

B2 (AB1) = B2. (17)

Notice that by associativity of matrix multiplication, the left hand side of the equation above becomes

B2 (AB1) = (B2A)B1 = IB1 = B1. (18)

Hence we have

B1 = B2. (19)

We see that B1 and B2 must be equal. Thus the inverse of any invertible matrix is unique.

In discussion, you will see a few more useful properties of matrix inverses!

Now the natural questions to ask are:

• How do we know if a matrix is invertible or not?

• If a matrix is invertible, how do we go about finding its inverse?

It turns out Gaussian Elimination could help us answer these questions!
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Finding inverses with Gaussian Elimination

A square matrix M and its inverse M−1 will always satisfy the following conditions MM−1 = I and M−1M =
I, where I is the identity matrix.

Let M =

[
1 1
2 1

]
and M−1 =

[
b11 b12
b21 b22

]
We want to find the values of bi j such that the equation MM−1 = I would be satisfied.[

1 1
2 1

][
b11 b12
b21 b22

]
=

[
1 0
0 1

]
Since we mathematicians are lazy, we can write the above as an augmented matrix, which joins the left
and right numerical matrices together and hides the variable matrix, as shown below.[

1 1 1 0
2 1 0 1

]
Now, to find the inverse matrix M−1 using Gaussian Elimination, we have to transform the left numerical
matrix (left half of the augmented matrix) to the identity matrix, then the right numerical matrix (right half
of the augmented matrix) becomes our solution. In equation form MM−1 = I, we are transforming M and
I simultaneously using row operations so that the equation becomes IM−1 = A, where A is the resulting
numerical matrix from the Gaussian Elimination. Since M−1 is multiplied by the identity matrix I, the
resulting numerical matrix A must equal to M−1, and we have the values for the elements in our inverse
matrix. We will now do the actual computation below:[

1 1 1 0
2 1 0 1

]
⇒ R2−2R1⇒

[
1 1 1 0
0 −1 −2 1

]
⇒−1(R2)⇒

[
1 1 1 0
0 1 2 −1

]

⇒ R1−R2⇒
[

1 0 −1 1
0 1 2 −1

]

M−1 is the right half of the augmented matrix. Therefore M−1 =

[
−1 1
2 −1

]
. More generally, for any

n×n matrix M, we can perform Gaussian Elimination on the augmented matrix M In

 .

If at termination of Gaussian Elimination, we end up with an identity matrix on the left, then the matrix on
the right is the inverse of the matrix M.  In M−1

 .

If we don’t end up with an identity matrix on the left after running Gaussian Elimination, we know that the
matrix is not invertible. What does this say about the rows of A? The rows of M are linearly dependent.
Conversely, we also know that if the rows of M are linearly dependent, running Gaussian Elimination on the
matrix will gives us at least one row of zeros. Hence we can conclude that a matrix M is invertible if and
only if its rows are linearly independent.
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Connecting invertibility of a matrix with its columns

In the previous section, we connected invertibility of a matrix with its rows. Alternatively, we can look at
whether a square matrix A ∈ Rn×n has an inverse from the column perspective.

A matrix A is invertible if and only if its columns are linearly independent.

Let’s think about this intuitively. Consider A as an operator on any vector~x∈Rn. What does it mean for A to
have an inverse? It suggests that we can find a matrix that "undoes" the effect of matrix A operating on any
vector~x ∈ Rn. What property should A have in order for this to be possible? A should map any two distinct
vectors to distinct vectors in Rn, i.e., A~x1 6= A~x2 for vectors ~x1,~x2 such that ~x1 6= ~x2. Since A is a square
matrix, there should be a bijective mapping between vectors in Rn and vectors in range(A). Hence we must
have span(A) =Rn. Recall that the dimension of the span of a matrix is the number of linearly independent
columns. Because span(A) = Rn, the number of linearly independent columns of A is equal to n. However,
since A has exactly n columns, we know then that the columns of A must be linearly independent.

Example 6.2 (Invertibility intuition):

Is the matrix A =

[
1 1
0 0

]
invertible? Intuitively, it is not because A can map two distinct vectors into the

same vector. [
1 1
0 0

][
1
3

]
= 1×

[
1
0

]
+3×

[
1
0

]
=

[
4
0

]
(20)[

1 1
0 0

][
2
2

]
= 2×

[
1
0

]
+2×

[
1
0

]
=

[
4
0

]
. (21)

(22)

We cannot recover the vector uniquely after it is operated by A. This is connected with the fact that the
columns are linearly dependent – different weighted combinations of columns could generate the same
vector.

With the above in mind, we can infer that a square matrix A ∈ Rn×n is invertible if and only if there exists a
unique solution to the system of linear equations A~x =~b for any vector~b ∈ Rn.
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