
EECS 16A Designing Information Devices and Systems I
Fall 2016 Official Lecture Notes Note 8

Subspace

In the previous lecture note, we introduced what a vector space is and the notion of basis and dimension. It
it is often useful to look at part of the entire set of vectors in a vector space.

A subspace U consists of a subset of the set V in the vector space (V,F) that satisfies the following three
properties:

• U contains the zero vector.

• Closed under vector addition: For any vector ~v1,~v2 ∈ U, their sum ~v1 +~v2 must also be in U.

• Closed under scalar multiplication: For any vector ~v ∈ U, α ∈ F, the scalar multiplication α~v must
also be in U.

Equivalently, a subspace is a subset of the vectors in a vector space where any linear combination of the
vectors in the set lies within the set.

Recall that the range of a matrix A ∈ Rn×m as the space of all outputs that the operator A can map to.
We know that range(A) is a subset of Rn. However, is range(A) a subspace? Let’s see if it satisfies each
condition for subspace.

• We know that the zero vector is in range(A) because A operating on the zero vector gives the zero
vector A~0 =~0.

• If ~v1,~v2 are in range(A), then there exist ~u2,~u2 ∈ Rm such that A~u1 =~v1 and A~u2 =~v2. Adding the
two equations together, we have

~v1 +~v2 = A~u1 +A~u2 = A(~u1 +~u2) . (1)

This tells us the~v1 +~v2 is in range(A) as well.

• If~v is in range(A), then there exist~u ∈ Rm such that A~u =~v. Consider any scalar α , we have

α~v = αA~u = A(α~u) . (2)

This says that α~v is also in range(A).

We have that range(A) is a subspace.

Now let’s also introduce two terms we often hear when we talk about matrices, column space and row
space. Column space is is defined as the span of the columns of a matrix, which is just the range of the
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matrix. Similarly, row space is defined as the span of the rows of a matrix. Directly following from the
definition, we can see that both of these spaces are subspaces.

Subspaces inherit the definition of basis and dimension from vector spaces — a basis of a subspace is a
set of linearly independent vectors that span the subspace and the dimension of subspace is the number of
vectors in its bases.

Let’s look at an example.

Example 8.1 (Subspace): Consider the linear operator A =

 1 0 0
−1 1 0
0 1 0

. Then the range of A would be a

subspace consisting of vectors in R3

range(A) = {α

 1
−1
0

+β

0
1
1

+ γ

0
0
0

} (3)

where α,β ,γ are any real scalars. We know that the input space R3 has dimension of 3. How about the
dimension of the output space? We can see that a basis for the output space range(A) is just the first two
columns of A since the first two columns are linearly independent of each other and the third column does
not contribute to the range since it is just a zero vector. So the dimension of the range of A is equal to
2. Notice that the dimension of the output space is smaller than the dimension of input space. We will
investigate this further in the next section.

Loss of Dimensionality and Nullspace

It might seem a little strange that the dimension of the output space can be smaller than the output of the input
space. After all, for any matrix A ∈Rn×m, we have m parameters to fiddle with when we construct our input
vector, so how can it be that what we are seeing on the output can be described by fewer parameters. Where
is the "remaining dimensionality" going to? The answer can be found in something called the nullspace.
The nullspace of A consists of all vectors~x in Rm, such that A~x =~0,

N(A) = {~x | A~x =~0, ~x ∈ Rm}. (4)

The nullspace of A is the set of vectors that get mapped to zero by A. What is the dimension of the nullspace?
We know that it can be at most m, since all of the input vectors have m components. However, unless A is
the zero matrix, not every input gets mapped to zero, so in general the dimension should be less than m. The
question we need to ask is how many independent ways can we create the zero vector from taking linear
combinations of the columns of A. Recall that

A~x =
m

∑
k=1

xi~ak, (5)

where again xi are the free parameters. So our task is to find vectors~x such that
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m

∑
i=1

xi~ai =~0 (6)

First note that the only way ∑
m
i=1 xi~ai =~0 (non-trivially) is if the columns of A are not all linearly independent.

This holds by definition of linear independence. We can represent A in terms of its linearly independent
columns and dependent columns, ~ai and ~ad respectively. Assuming there are j < m linearly independent
columns1,

A =

 | | |
~a1 ~a2 . . . ~am

| | |

=

 | | | |
~ai

1 . . . ~ai
j ~ad

1 . . . ~ad
m− j

| | | |

 . (7)

We can then break up the summation in equation (??) into two summations one for the linearly independent
columns and another for the linearly dependent columns,

j

∑
k=1

xi
k~a

i
k +

m− j

∑
k=1

xd
k~a

d
k =~0, (8)

where xi and xd are the parameters of~x that multiply the linearly independent and dependent columns of A
respectively. Rearranging a bit we get

j

∑
k=1

xi
k~a

i
k =−

m− j

∑
k=1

xd
k~a

d
k (9)

Remember we get to choose the parameters in our vector ~x that will satisfy (??). We know that in the
total summation at least one linearly dependent vector must be multiplied by a nonzero parameter, since the
linearly independent vectors alone cannot be linearly combined (non-trivially) to get~0. With this constraint
let us then simplify our problem. We will impose that xd

1 be nonzero, and set the other parameters multiplying
linearly dependent vectors equal to zero. That is xd

2 = . . .= xd
m− j = 0. Since ~ad

1 is linearly dependent on the
~ai

k’s we know that there exist a unique set of numbers β 1
1 ,β

1
2 , . . . ,β

1
j such that

j

∑
k=1

β
1
k~ak =~ad

1 . (10)

In other words there is a unique linear combination of our linearly independent vectors that equals~ad
1 . As an

aside, if a vector can be represented as a linear combination of linearly independent vectors then this
representation is unique. You can try to prove this. Hint: Assume that two representations exists, set
the two representations equal to one another, and see if the linear independence still holds. Rearranging
we get

1Please note that the linearly independent columns do not all have to be next to another, we just write it this way to ease the
presentation. The results we show will still hold even if the linearly independent columns are not side by side.
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j

∑
k=1
−β

1
k~a

i
k +~ad

1 =~0, (11)

which is also equal to

j

∑
k=1
−β

1
k~a

i
k +~ad

1 +
m− j

∑
k=2

0~ad
k =~0. (12)

Notice that the last summation on the left hand side is equal to zero, and we only include it to more clearly
show one of the vectors in the nullspace, namely

~x =



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


(13)

Can we find others? Well the first thing we can do is multiply equation (??) by our free parameter xd
1 ,

xd
1(

j

∑
k=1

β
1
k~ak) = xd

1~a
d
1 . (14)

Similarly we can conclude

j

∑
k=1
−xd

1β
1
k~a

i
k + xd

1~a
d
1 +

m− j

∑
k=2

0~ad
k =~0. (15)

Since xd
1 is a free parameter any vector of the form

~x =



−β 1
1 xd

1
−β 1

2 xd
1

...
−β 1

j xd
1

xd
1
0
0
...
0


=



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


xd

1 (16)
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will also be in the nullspace! Are there others? Yes. There is nothing special about choosing the parameter
of the first linearly dependent vector to be the nonzero parameter. We can repeat the same procedure for
each of the linearly dependent columns, to obtain new vectors in the nullspace. For example say that we set
xd

1 = xd
3 = . . .= xd

m− j = 0, and leave xd
2 as our nonzero parameter we will find that

~x =



−β 2
1

−β 2
2

...
−β 2

j
0
1
0
...
0


xd

2 , (17)

is also in the nullspace, where ∑
j
k=1 β 2

k~ak = ~ad
2 . This procedure can be done for each linearly dependent

vector, for example if xd
3 is the nonzero parameter we will get

~x =



−β 3
1

−β 3
2

...
−β 3

j
0
0
1
...
0


xd

3 , (18)

Furthermore, we can add vectors together from our nullspace together to get other vectors in the nullspace.
Aside: Try to prove this. Hint: if~x1 and~x2 are in the nullspace of A, what can be said about A(~x1+~x2)?
This means that

~x =



−β 1
1

−β 1
2

...
−β 1

j
1
0
0
...
0


xd

1 +



−β 2
1

−β 2
2

...
−β 2

j
0
1
0
...
0


xd

2 +



−β 3
1

−β 3
2

...
−β 3

j
0
0
1
...
0


xd

3 + . . .+



−β
m− j
1

−β
m− j
2
...

−β
m− j
j
0
0
0
...
1


xd

m− j (19)

is also in the nullspace. Notice that once we choose the xd parameters then the xi parameters are fixed. This
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is because the xd parameters control how much of the linearly dependent columns of A are being put into the
summation, and the xi parameters must ensure that the exact amount of linearly independent columns are
included to cancel out the linearly dependent columns so that the output be zero. So we finally conclude that
the dimension of the nullspace is equal to the number of our xd parameters, which is equal to the number of
linearly dependent columns of A. We will work out some examples in the next section.

The last point we would like to highlight here is that the dimension of the range of A is equal to the number
of linearly independent columns, and the dimension of the nullspace of A is equal to the number of linearly
dependent columns. Thus

m−dim(range(A)) = dim(N(A)), (20)

so the loss of dimensionality from the input space to the output space shows up in the nullspace! This result
is called the rank-nullity theorem.

Computing the Nullspace

So now we will show you how to compute the nullspace of a matrix systematically. Hopefully our analysis
in the previous section will prove to be fruitful. For a vector to be in the nullspace it must weight the linearly
independent columns appropriately to cancel out the weighted linearly dependent columns, and what we
will show next will find all such vectors that do so.

In solving for the nullspace, we are fundamentally trying to solve the system of equations A~x =~0. We know
that row reducing does not effect the solution of the system of equations, so we will assume that every matrix
we have is already in reduced row echelon form (RREF). If the matrix is not in RREF then it can first be
row reduced and the techniques will apply. RREF will make our lives much easier for two reasons: first, it
is really easy to find the linearly independent columns (the columns with pivots), and it is easy to figure out
how the linearly independent columns should be combined to cancel out the linearly dependent columns.
We will work with the matrix

A =


1 2 0 3 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 (21)

First we identify the linearly dependent columns, which in this case could be columns 2 and 4. To be clear,
the set of linearly dependent columns we chose is

{


2
0
0
0
0

 ,


3
2
0
0
0

} (22)
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and the set of linearly independent columns includes columns 1, 3, and 5,

{


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

}. (23)

Note that the choice of linearly dependent columns need not be unique. All that is needed is that any vector
in the linearly dependent columns we choose can be written as a linear combination of the vectors in the
set of linearly independent columns and, of course, the columns in the linearly independent set should be
linearly independent.

We would want to find all possible scalars x1,x2,x3,x4,x5 such that

x2×


2
0
0
0
0

+ x4×


3
2
0
0
0

+ x1×


1
0
0
0
0

+ x3×


0
1
0
0
0

+ x5×


0
0
1
0
0

=~0. (24)

Rather than considering all the linearly dependent vectors at once, we can consider them individually and
sum up the contribution from each linearly dependent columns at the end. Let us first impose that the first
linearly dependent column must have a weight of one in the summation and the other linearly dependent
columns have weights of zero. After this, we will repeat this and only allow the second linearly dependent
column to show up in the summation. Let’s start with the first linearly dependent column, we want to find
the unique weighting of the linearly independent columns so that the resulting sum cancels out the first
linearly dependent column. It is easy to see that

1×


2
0
0
0
0

+0×


3
2
0
0
0

= 2×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

 . (25)

Now, as before, the equality would hold if we multiply both sides of the equation by any scalar α ∈ R

α×


2
0
0
0
0

+0×


3
2
0
0
0

= 2α×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

 . (26)

Note that essentially we can treat α as a free variable that can vary its value however we want while satisfying
the above equation. Moving everything to the left hand side, we have

α×


2
0
0
0
0

+0×


3
2
0
0
0

+(−2α)×


1
0
0
0
0

+0×


0
1
0
0
0

+0×


0
0
1
0
0

= 0. (27)
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Now we see that any vector of the form ~x =


x1
x2
x3
x4
x5

 =


−2α

α

0
0
0

 =


−2
1
0
0
0

α is in the nullspace of A. Now

let’s set the weight of the second linearly dependent column to one and set the weight of the first linearly
dependent to zero. Similarly, we can find the unique weightings of the linearly independent columns that
sum to the second linearly dependent column.

0×


2
0
0
0
0

+1×


3
2
0
0
0

= 3×


1
0
0
0
0

+2×


0
1
0
0
0

+0×


0
0
1
0
0

 . (28)

The equality would still hold if we multiply both sides of the equation by any scalar β ∈ R,

0×


2
0
0
0
0

+β ×


3
2
0
0
0

= 3β ×


1
0
0
0
0

+2β ×


0
1
0
0
0

+0×


0
0
1
0
0

 . (29)

Again, moving everything to the left hand side of the equation, we have

0×


2
0
0
0
0

+β ×


3
2
0
0
0

+(−3β )×


1
0
0
0
0

+(−2β )×


0
1
0
0
0

+0×


0
0
1
0
0

=~0. (30)

We have that any vector of the form~x =


x1
x2
x3
x4
x5

=


−3β

0
−2β

β

0

=


−3
0
−2
1
0

β is in the nullspace of A. We know that

if any two vectors are in the nullspace, then their sum is also in the nullspace. Thus we can conclude that
the nullspace of A is

N(A) = {


−2
1
0
0
0

α +


−3
0
−2
1
0

β | α,β ∈ R}. (31)

Notice that the dimension of the nullspace is 2 and the dimension of the range is 3.

Network Flow — Traffic

Let’s illustrate the concept of nullspace on an interesting application. We would like to monitor the flow of
vehicles in a road network. We are given a road network as follows
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A B

C

DE

t1

t2

t3

t4

t5

t6

Each of the nodes above is an intersection and the arrows are the roads connecting the intersections. The
traffic flows on all the roads are denoted as t1, t2, t3, t4, t5, t6 with units vehicles/hr. The vehicles are always
moving and they cannot accumulate or disappear at the intersection. Then at each intersection, the total
traffic flow going into it must be the same as the traffic flow coming out of it. With this in mind, we can
write down the flow conservation equations at each intersection as follows (the left hand side represents the
total traffic flow going into the intersection and the right hand side represents the total traffic flow flowing
out of the intersection):

A : t6 = t1
B : t1 = t2 + t4
C : t2 = t3
D : t3 + t4 = t5
E : t5 = t6.

We can represent the constraints in matrix form


−1 0 0 0 0 1
1 −1 0 −1 0 0
0 1 −1 0 0 0
0 0 1 1 −1 0
0 0 0 0 1 −1





t1
t2
t3
t4
t5
t6

=~0 (32)

Let’s represent the above as B~t =~0. We call the matrix B the incidence matrix of the network. In general,
the incidence can be constructed as follows.

Bi j =


1 if flow j goes into intersection i
−1 if flow j goes out of intersection i
0 otherwise

(33)

Now let’s try to interpret the incidence matrix more intuitively. Looking from the row perspective, we can
see that each row describes the incidence of all the flows at a particular intersection. On the other hand,
looking from the column perspective, we can see that each column describes the incidence of a particular
flow at all intersections.
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We know that any valid flow~t needs to satisfy the equation B~t =~0. What does this mean? It means that the
set of valid flows is just the nullspace of B! You will have the chance to explore this idea a bit more in your
next homework.
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