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POWER AND ENERGY IN ELECTRIC CIRCUITS

Power: Transfer of energy per unit time (Joules per second = 
Watts)
Concept: in falling through a positive potential drop V, a 
positive charge q dissipates energy equal to qV.
• potential energy change = qV for each charge q
• Rate is given by # charges/sec
Power = P = V (dq/dt) = VI
So Power = voltage X current

Energy:  Volts X Coulombs  (e.g. raise one coulomb up 
through one volt in potential and you have done 1 Joule 
of work (i.e. delivered one Joule of energy).
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POWER IN ELECTRIC CIRCUITS

P = V × I     Volt ×Amps = Volts ×Coulombs/s = Joules/s = Watts

Circuit elements can absorb or release power (I.e., from or to the rest of the 
circuit); power can be a function of time.

How to keep the signs straight for absorbing and releasing power?

+ Power ≡ absorbed into element

− Power ≡ delivered from element
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“ASSOCIATED REFERENCE DIRECTIONS”
Associated reference directions refers to defining the current through a 

circuit element as positive when entering the terminal associated with 
the + reference for voltage 

For positive current and positive voltage, positive charge “falls down” a 
potential “drop” in moving through the circuit element: it absorbs power

• P = VI > 0 corresponds to the element absorbing power {ONLY FOR 
ASSOCIATED REFERENCE DIRECTIONS}

How can a circuit element absorb power?

By converting electrical energy into heat (resistors in toasters); light (light 
bulbs); acoustic energy (speakers); by storing energy (charging a 
battery).

Negative power ⇒ releasing power to rest of circuit

V
This box represents
the rest of the circuit

à i

Circuit element

+
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A) For Resistor:  P = i vR
(because we are using 
“associated reference directions”)

“ASSOCIATED REFENCE DIRECTIONS” (cont.)

−

1.5

+

−

+

vRvB

i

Hence, P = i vR = +1.5mW 
(absorbed)

1.5K

B) Note that for the battery, current i is 
opposite to associated

mW 5.1i)v(P B −=−=So,                                
(delivered out of battery)

We know i = +1 mA

Note for resistor (only)  P=i2R or V2/R    (substitution of ohms law)
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“ASSOCIATED REFENCE DIRECTIONS” (cont.)

B) Battery:     iB and vB are 
associated,  therefore P= iB vB .  
Thus

−

1.5

+

RvB

iRiB
Again, iR = 1mA 

therefore iB = -1mA

mW 5.1)101(5.1P 3 −=−×−×=

A) Resistor: P = iB vB = +1.5mW

Positive sign because of 
associated directions

Positive sign thus power 
is absorbed

Negative sign thus power is delivered
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EXAMPLES OF CALCULATING POWER

Find the power absorbed by each element 

¬ ¯
®­

Element ¬:

Element ­: mW 6mA) 2V(32P ==

Element ®: mW 5.0mA) 1V(0.53P ==

mW 9)mA 3(V31P −=−=

Element ¯: mW 5.2mA) 5.2(1V4P ==

−

+

−

+

2 V
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−+a
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c

3 V

−

+

1 V
2.5 mA

0.5 mA

3 mA

+

−

3V

− 3 mA

flip current direction:
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EXAMPLES OF CALCULATING POWER
in non-DC situations

• Time-averaged power  - just average P(t)   This can be viewed as 
plotting Power versus time, computing the area under the curve 
over some interval, and dividing by the interval.

0    1        3   4         6   7         9   10     12  13 

t(ms)

Power (mW)

15
10

5

0

Lets average over the 3ms period of the waveform:

Clearly the average power is 15/3 mW or 5mW.
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EXAMPLES OF CALCULATING POWER
in non-DC situations

• Note that P(t) can be positive or negative  (part of the time 
absorbing power, part of the time producing power)

Lets average over a 6ms interval  (that is the period)

Now the average power is (15 –10)/6 mW or 5/6 mW.

0    1 6   7                      12  13 

t(ms)

Power (mW)
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CAPACITOR
Any two conductors a and b separated by an insulator with a difference in 
voltage Vab will have an equal and opposite charge on their surfaces whose 
value is given by Q = CVab, where C is the capacitance of the structure, and 
the + charge is on the more positive electrode.
We learned about the parallel-plate 
capacitor in physics. If the area of the 
plate is A, the separation d, and the 
dielectric constant of the insulator is 
ε, the capacitance equals C = A ε/d.

A d

Symbol or

But               so 

where we use the associated reference directions.
dt

adQ
i =

dt
dvCi =

i

−

+
a

b

Vab
Constitutive relationship: Q = C (Va − Vb).

(Q is positive on plate a if Va > Vb)
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ENERGY STORED IN A CAPACITOR

You might think the energy (in Joules) is QV, which has the dimension of 
joules. But during charging the average voltage was only half the final 
value of V.

Thus, energy is .2
2
1

       
2
1

CVQV =

(To see this clearly, plot voltage and charge versus 
time for a constant current into a capacitor and think 
about the energy during some incremental charging 
interval V(t) dQ and then reckon what the average 
voltage is during the charging up to the final capacitor 
voltage V).
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ENERGY STORED IN A CAPACITOR
EXAMPLES

Examples to be worked in class

1) Battery charging a capacitor to voltage VB, Find energy dissipated 
in resistor, energy delivered by battery, and energy stored in 
capacitor.

Answers: 1/2CV2, CV2 , 1/2CV2

2) Capacitor discharging into a resistor.  Find the energy lost from the 
capacitor and the energy dissipated in the resistor.

Answer:  1/2CV2 , 1/2CV2 
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ENERGY STORED IN A CAPACITOR (cont.)
(Not to be covered, just for fun)

More rigorous derivation: During charging, the power flow is   
v ⋅i  into the capacitor, where  i  is into + terminal. We 
integrate the power from t = 0  (v = 0) to t = end (v = V). The 
integrated power is the energy

i

v

−

+

∫
=

=
=∫

=
∫=⋅=

Vv

0v
dq vdt

endt

0
 

dt
dqend

0
vdt ivE

but dq = C dv. (We are using small q instead of Q to remind us 
that it is time varying . Most texts use Q.)

2CV
2
1Vv
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dv CvE ∫

=

=
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Capacitor Inductor

dt
dVCi =

dt
diLv =

2CV
2
1E = 2LI

2
1E =

INDUCTORS
Inductors are the dual of capacitors – they store energy in magnetic 
fields that are proportional to current. 
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SWITCHING PROPERTIS OF L, C
. 

Just as capacitors demand v be continuous (no jumps in V), 
inductors demand i  be continuous (no jumps in  i ). Reason? In 
both cases the continuity follows from non-infinite, i.e., finite, power 
flow.

Capacitor Inductor
v is continous i is continous
I can jump V can jump
Do not short circuit a
charged capacitor
(produces ∞  current)

Do not open an inductor
with current flowing
(produces ∞  voltage)

Rule: The voltage across a capacitor must be continuous and 
differentiable

Basis: The energy cannot “jump” (else infinite energy flow); and of 
course the current cannot be infinite, so dV/dt must be finite.


